crack mouth opening displacement
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 34)

H-INDEX

10
(FIVE YEARS 3)

Buildings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Wei He ◽  
Wenru Hao ◽  
Xia Meng ◽  
Pengchong Zhang ◽  
Xu Sun ◽  
...  

In this paper, uniaxial compressive strength (UCS) test and three-point bending (TPB) test, together with an acoustic emission (AE) system, were performed to investigate the mechanical properties and AE characteristic changes of concrete with different graphite powder (GP) content. The results show that: (1) Poor adhesion and low interlocking of graphite with cement stone increase the initial defects of concrete, reducing its elastic modulus and the cyclo-hoop effect, and thus weakening the compressive strength. (2) For concrete with a low graphite content, the second sharp rise in ringing counts or energy released during the compressive process can be regarded as a failure alarm. However, as GP content increases, the second sharp rise fades away, while the first sharp rise becomes more visible. At high GP content, the first sharp rise is better for predicting failure. (3) The initial defects caused by GP significantly lower the initial fracture toughness, but its bridging effect greatly increases the critical crack mouth opening displacement and thus significantly enhances the unstable fracture toughness of concrete, by up to 9.9% at 9% GP content. (4) In contrast to compressive process, the sharp increase in AE signals preceding failure during the fracture process cannot be used to predict failure because it occurs too close to the ultimate load. However, as GP can significantly increase the AE signals and damage value in the stable period, such failure precursor information can provide a safety warning for damage development.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7349
Author(s):  
Ahmed Bahgat Tawfik ◽  
Sameh Youssef Mahfouz ◽  
Salah El-Din Fahmy Taher

The numerical simulation of concrete fracture is difficult because of the brittle, inelastic-nonlinear nature of concrete. In this study, notched plain and reinforced concrete beams were investigated numerically to study their flexural response using different crack simulation techniques in ABAQUS. The flexural response was expressed by hardening and softening regime, flexural capacity, failure ductility, damage initiation and propagation, fracture energy, crack path, and crack mouth opening displacement. The employed techniques were the contour integral technique (CIT), the extended finite element method (XFEM), and the virtual crack closure technique (VCCT). A parametric study regarding the initial notch-to-depth ratio (ao/D), the shear span-to-depth ratio (S.S/D), and external post-tensioning (EPT) were investigated. It was found that both XFEM and VCCT produced better results, but XFEM had better flexural simulation. Contrarily, the CIT models failed to express the softening behavior and to capture the crack path. Furthermore, the flexural capacity was increased after reducing the (ao/D) and after decreasing the S.S/D. Additionally, using EPT increased the flexural capacity, showed the ductile flexural response, and reduced the flexural softening. Moreover, using reinforcement led to more ductile behavior, controlled damage propagation, and a dramatic increase in the flexural capacity. Furthermore, CIT showed reliable results for reinforced concrete beams, unlike plain concrete beams.


2021 ◽  
Vol 1205 (1) ◽  
pp. 012019
Author(s):  
H Simonova ◽  
C Mizerova ◽  
P Rovnanik ◽  
M Lipowczan ◽  
P Schmid

Abstract In this study, the effect of carbon black and graphite filler on the crack initiation and fracture parameters of fly ash geopolymer mortar is investigated. The carbon black was added in the amount of 0.5 and 1.0% and graphite powder in the amount of 5 and 10% relative to the fly ash mass. The reference mixture without any filler was also prepared. The fracture characteristics were determined based on the results of the three-point bending test of prismatic specimens provided with an initial central edge notch. The fracture experiments were conducted at the age of 48 days. The vertical force (F), the displacement measured in the middle of the span length (d), and the crack mouth opening displacement (CMOD) were continuously recorded during the test. The records of fracture tests were subsequently evaluated using the effective crack model, work-of-fracture method, and double-K fracture model. The addition of both fine fillers led to a decrease in monitored mechanical fracture parameters in comparison with reference mortar.


2021 ◽  
Vol 2124 (1) ◽  
pp. 012027
Author(s):  
A I Gabitov ◽  
A N Ryazanov ◽  
A S Salov ◽  
A R Biktasheva

Abstract The analysis of data obtained under studying scientific, technical and normative literature in the area of applying efficient concretes, in particular, fiber-reinforced concrete, in the world and national tunnel construction is presented herein. The European regulatory documents, standard metrologically certified methods and procedures for analyzing and testing, laboratory test equipment and measuring instruments are indicated. Steel fiber concrete studies was explored at the Scientific and Educational Center for Innovative Technologies of the Architectural and Construction Institute of the Ufa State Petroleum Technical University. Prism bending tests were made with different fiber content. In addition to laboratory tests, other tests were made in accordance with the Russian standards, where the prisms are tested without a notch. The correlation between the slope of the load-to-displacement curve of the crack mouth (CMOD - Crack Mouth Opening Displacement) and the length of the crack was used in the course of the study. The fiber content enabling to get an average residual bending strength of at least 1.5 MPa at 0.5 CMOD (equivalent to 0.47 mm center deviation) and an average residual bending strength of at least 1 MPa at 3.5 mm CMOD (equivalent to 3.02 mm of center deviation) is found. Statistical distributions of the Grubbs tests are analyzed by methods of statistical modeling. The regulatory framework for fiber concrete is not currently well developed in the Russian Federation, thereby reducing greatly the application of new generation concretes meeting the current knowledge. The application of fiber concrete in tunnel construction will prove to be economically justified and the areas of applying effective materials are to be developed in future with the wide participation of scientific, design, production, construction and other specialized organizations, as well as educational and training centers.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6378
Author(s):  
Barbara Kucharczyková ◽  
Hana Šimonová ◽  
Dalibor Kocáb ◽  
Libor Topolář

This paper presents the results of an experimental program aimed at the assessment of the freeze–thaw (F–T) resistance of concrete based on the evaluation of fracture tests accompanied by acoustic emission measurements. Two concretes of similar mechanical characteristics were manufactured for the experiment. The main difference between the C1 and C2 concrete was in the total number of air voids and in the A300 parameter, where both parameters were higher for C1 by about 35% and 52%, respectively. The evaluation of the fracture characteristics was performed on the basis of experimentally recorded load–deflection and load–crack mouth opening displacement diagrams using two different approaches: linear fracture mechanics completed with the effective crack model and the double-K model. The results show that both approaches gave similar results, especially if the nonlinear behavior before the peak load was considered. According to the results, it can be stated that continuous AE measurement is beneficial for the assessment of the extent of concrete deterioration, and it suitably supplements the fracture test evaluation. A comparison of the results of fracture tests with the resonance method and splitting tensile strength test shows that all testing methods led to the same conclusion, i.e., the C1 concrete was more F–T-resistant than C2. However, the fracture test evaluation provided more detailed information about the internal structure deterioration due to the F–T exposure.


2021 ◽  
Vol 30 (3) ◽  
pp. 439-450
Author(s):  
Haider Al-Jelawy ◽  
Ayad Al-Rumaithi ◽  
Aqeel Fadhil ◽  
Alaa Naji

In this paper, mesoscale modeling is performed to simulate and understand fracture behavior of two concrete composites: cement and asphalt concrete using disk-shaped compact tension (DCT) tests. Mesoscale models are used as alternative to macroscale models to obtain better realistic behavior of composite and heterogeneous materials such as cement and asphalt concrete. In mesoscale models, aggregate and matrix are represented as distinct materials and each material has its characteristic properties. Disk-shaped compact tension test is used to obtain tensile strength and fracture energy of materials. This test can be used as a better alternative to other tests such as three points bending tests because it is more convenient for both field and laboratory specimens in addition to its accurate results. Comparing the numerical results of the mesoscale models of cement and asphalt concrete specimens with experimental data shows that these models can predict the behavior of these composite materials very well as seen in the curves of load-crack mouth opening displacement (CMOD). Also, the mesoscale modeling highlights the variability of crack direction where it is dependent on the random distribution of aggregate.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5755
Author(s):  
Parinaz Belalpour Dastjerdi ◽  
Eric N. Landis

In this study, the fracture mechanics of eastern spruce were characterized in relation to end-grain orientation. Compact tension-type specimens with small pre-formed cracks were prepared such that grain angle varied relative to the load axis. Specimens were loaded under crack mouth opening displacement (CMOD) control as to maintain stable crack growth. Specimen fracture was characterized using both R-curve and bulk fracture energy approaches. The results showed that under a RT grain orientation, as well as grain deviations up to about 40∘, cracks will follow a path of least resistance in an earlywood region. As the grain angle exceeds 40∘, the crack will initially move macroscopically in the direction of maximum strain energy release rate, which extends in the direction of the pre-crack, but locally meanders through earlywood and latewood regions before settling once again in an earlywood region. At 45∘, however, the macroscopic crack takes a turn and follows a straight radial path. The results further show that RT fracture is macroscopically stable, while TR fracture is unstable. None of the end-grain fracture orientations showed rising R-curve behavior, suggesting that there is not a traditional fracture process zone in this orientation.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5088
Author(s):  
Duyen Trinh-Duc ◽  
Andrzej Piotrowski ◽  
Cezary Ajdukiewicz ◽  
Piotr Woyciechowski ◽  
Marcin Gajewski

Concretes with dispersed reinforcement are increasingly used in structural engineering. The basic source of knowledge on their application and design are the Model-Code 2010 guidelines. These guidelines, however, apply mainly to steel rebar reinforcement and are not fully sufficient in the analysis of the load-bearing capacity of elements made of concrete with dispersed reinforcement. Therefore, scientific research in this field is carried out continuously. The main goal of our work is to provide experimental data for the calibration of constitutive models of the cracking mechanics of concrete with reinforcement in the form of steel and polypropylene fibers. This article shows the possibility of using the digital image correlation system (DIC) to achieve this goal. The method of sample preparation and the method of conducting the tests were modeled on the recommendations contained in the PN-EN 14651: 2007 standard. The tests were carried out on prismatic elements with a notch loaded in a three-point bending setup. The results of standard strength tests are presented in the form of column graphs and tables. As an extension, the results of calculations of energy dissipated in fracture process are given. Moreover, the experimentally obtained graphs of the relationship between the force, displacement and crack opening were presented, which were supplemented with the images of crack development obtained with the use of DIC. The development of the crack net is characterized not only qualitatively but also quantitatively as a function of deflection or crack mouth opening displacement. Conclusions concerning the adopted research methodology and the tested materials are presented at the end of the article.


2021 ◽  
Vol 322 ◽  
pp. 66-71
Author(s):  
Martin Lipowczan ◽  
David Lehký ◽  
Iva Rozsypalová ◽  
Petr Daněk ◽  
Pavla Rovnaníková ◽  
...  

The paper deals with selected alkali-activated aluminosilicate (AAAS) composites based on ceramic precursors in terms of characterization by mechanical fracture parameters. Two composites made of brick dust as a precursor and an alkaline activator with a silicate modulus Ms = 1.0 were investigated. The composites differed in the fineness of grinding of the precursor – in the first set it was 0 to 1 mm, in the second set 0 to 0.3 mm. The filler was crushed brick. The test specimens had nominal dimensions of 40 × 40 × 160 mm and were provided with notches in the middle of the span up to 1/3 of the depth of the specimens after 28 days of hardening. Five to six specimens from each composite set were tested. The specimens were subjected to three-point bending tests, in which force vs. displacement (deflection in the middle of the span) diagrams (F–d diagrams) and force vs. crack mouth opening displacement (F–CMOD) diagrams were recorded. After correction of these diagrams, the values of static modulus of elasticity, effective fracture toughness, effective toughness and specific fracture energy were determined using the Effective Crack Model and the Work-of-Fracture method. After the fracture experiments, the values of informative compressive strength were determined on one of the fractured parts. At the same time, the values of static modulus of elasticity, tensile strength and specific fracture energy were identified using artificial neural networks and F–d diagrams measured and simulated in the ATENA FEM software. All evaluations included the determination of basic statistics of parameters.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4428
Author(s):  
Julia Blazy ◽  
Łukasz Drobiec ◽  
Paweł Wolka

Fiber reinforcement is currently most often used in floors, railway sleepers, prefabricated structural elements such as slabs, beams and tanks, and in small architecture elements. Designing elements or structures made of fiber-reinforced concrete requires knowledge of its basic mechanical parameters. In the case of concretes with metallic fibers, the literature can find many tests and standard guidelines regarding compressive, flexural, tensile strength and fracture energy. The properties of concretes with non-metallic fibers are slightly less recognized, especially concretes with new types of polymer fibers. Additionally, the lack of standardized methods of testing concrete with polymer fibers make their application much more difficult. In the article, the possibility of using the EN 14651 standard to assess the flexural tensile strength of concrete with the addition of 2.0 and 3.0 kg/m3 of synthetic fibers with different geometry and form was presented. There was a 5.5–13.5% increase in the flexural tensile strength depending on the mixture type. Moreover, in the case of fiber-reinforced concretes, the ductility was enhanced and the samples were characterized by significant residual flexural tensile strengths. Additionally, from the workability tests it was concluded that after the incorporation of fibers, the consistency class decreased by one, two or three. Nevertheless, the compressive strengths of concrete with and without fibers were very similar to each other, and varied from 58.05 to 61.31 MPa. Moreover, it was concluded that results obtained from three-point bending tests significantly differed from empirical formulas for the calculation of the flexural tensile strength of fiber-reinforced concretes with dispersed steel fibers present in the literature. As a result, the new formula determined by the authors was proposed for concrete with polymer fibers with a nominal fiber content ≤1.0% and slenderness of up to 200. It must be mentioned that the formula gave a very good agreement with studies presented in different literature positions. In addition, an attempt was made to evaluate the strengths of tested mixes in accordance with the Model Code 2010. However, it occurred that the proposed fiber-reinforced concrete mixtures would not be able to replace traditional reinforcement in a form of steel bars. Furthermore, in uniaxial tensile tests, it was not possible to determine the σ–w graphs, and received results for maximum tensile strength did not show the clear influence of fibers incorporation on concrete. Then, the fracture energy enhancement (from about 16 to 22 times) and dependencies: crack mouth opening displacement–deflection; crack mouth opening displacement–crack tip opening displacement; and crack tip opening displacement–deflection were analyzed. Finally, the results from flexural tensile tests were compared with measurements of the surface displacement field obtained through the Digital Image Correlation technique. It was concluded that this technique can be successfully used to determine the crack mouth and crack tip opening displacements with very high accuracy.


Sign in / Sign up

Export Citation Format

Share Document