Analysis of Localized Plastic Strain in Heterogeneous Cast Iron Microstructures Using 3D Finite Element Simulations

Author(s):  
Kent Salomonsson ◽  
Jakob Olofsson
2015 ◽  
Vol 94 ◽  
pp. 04029
Author(s):  
Joško Ožbolt ◽  
Barış İrhan ◽  
Daniela Ruta

2017 ◽  
Vol 8 (5) ◽  
pp. 506-515 ◽  
Author(s):  
Raviraj M.S. ◽  
Sharanaprabhu C.M. ◽  
Mohankumar G.C.

Purpose The purpose of this paper is to present the determination of critical stress intensity factor (KC) both by experimental method and three-dimensional (3D) finite element simulations. Design/methodology/approach CT specimens of different compositions of Al6061-TiC composites (3wt%, 5wt% and 7wt% TiC) with variable crack length to width (a/W=0.3-0.6) ratios are machined from as-cast composite block. After fatigue pre-cracking the specimens to a required crack length, experimental load vs crack mouth opening displacement data are plotted to calculate the KC value. Elastic 3D finite element simulations have been conducted for CT specimens of various compositions and a/W ratios to compute KC. The experimental results indicate that the magnitude of KC depends on a/W ratios, and significantly decreases with increase in a/W ratios of the specimen. Findings From 3D finite element simulation, the KC results at the centre of CT specimens for various Al6061-TiC composites and a/W ratios show satisfactory agreement with experimental results compared to the surface. Originality/value The research work contained in this manuscript was conducted during 2015-2016. It is original work except where due reference is made. The authors confirm that the research in their work is original, and that all the data given in the article are real and authentic. If necessary, the paper can be recalled, and errors corrected.


Author(s):  
Samir El Shawish ◽  
Leon Cizelj ◽  
Igor Simonovski

Stainless steel is a commonly used material in safety-important components of nuclear power plants. In order to study degradation mechanisms in stainless steels, like crack initiation and propagation, it is important to characterize the degree of plastic strain on microstructural level. One way to estimate local plastic strain is by measuring local crystal orientations of the scanned surfaces: the electron backscatter diffraction (EBSD) measurements on stainless steel revealed a strong correlation between the spread of crystal orientations within the individual grains and the imposed macroscopic plastic strain. Similar behavior was also reproduced by finite element simulations where stainless steel was modeled by an anisotropic elasto-plastic constitutive model. In that model the anisotropic Hill’s plasticity function for yield criteria was used and calibrated against the EBSD measurements and macroscopic tensile curve. In this work the Hill’s phenomenological model is upgraded to a more sophisticated crystal plasticity model where plastic deformation is assumed to be a sum of crystalline slips in all activated slip systems. The hardening laws of Peirce, Asaro and Needleman and of Bassani and Wu are applied in crystal plasticity theory and implemented numerically within the user subroutine in ABAQUS. The corresponding material parameters are taken from literature for 316L stainless steel. Finite element simulations are conducted on the analytical Voronoi tessellation with 100 grains and initial random crystallographic orientations. From the simulations, crystal and modified crystal deformation parameters are calculated, which quantify mean and median spread of crystal orientations within individual grains with respect to central grain orientation. The results are compared to EBSD measurements and previous simulations performed with Hill’s plasticity model.


2014 ◽  
Vol 939 ◽  
pp. 39-46 ◽  
Author(s):  
Hong Qian Xue ◽  
Qian Tao ◽  
Emin Bayraktar

The aim of this study is to examine the effect of the clearance and interference-fit on the fatigue life of composite lap joints in double shear, 3D finite element simulations have been performed to obtain stress (or strain) distributions around the hole due to interference fit using FEM package, Non-linear contact analyses are performed to examine the effects of the clearance and interference for titanium and composite lap joint. Fatigue tests were conducted for the titanium and composite lap joints with clearance fit and interference fit with 0.5, 1, and 1.5% nominal interference fit levels at different cyclic loads. The results shows that interference fit increases fatigue life compared to clearance fit specimens, the titanium and composite lap joint with 1% interference fit level has the better fatigue life.


Sign in / Sign up

Export Citation Format

Share Document