An energy-efficient cuckoo search algorithm for virtual machine placement in cloud computing data centers

Author(s):  
Hamza Onoruoiza Salami ◽  
Abubakar Bala ◽  
Sadiq M. Sait ◽  
Idris Ismail
Author(s):  
Federico Larumbe ◽  
Brunilde Sansò

This chapter addresses a set of optimization problems that arise in cloud computing regarding the location and resource allocation of the cloud computing entities: the data centers, servers, software components, and virtual machines. The first problem is the location of new data centers and the selection of current ones since those decisions have a major impact on the network efficiency, energy consumption, Capital Expenditures (CAPEX), Operational Expenditures (OPEX), and pollution. The chapter also addresses the Virtual Machine Placement Problem: which server should host which virtual machine. The number of servers used, the cost, and energy consumption depend strongly on those decisions. Network traffic between VMs and users, and between VMs themselves, is also an important factor in the Virtual Machine Placement Problem. The third problem presented in this chapter is the dynamic provisioning of VMs to clusters, or auto scaling, to minimize the cost and energy consumption while satisfying the Service Level Agreements (SLAs). This important feature of cloud computing requires predictive models that precisely anticipate workload dimensions. For each problem, the authors describe and analyze models that have been proposed in the literature and in the industry, explain advantages and disadvantages, and present challenging future research directions.


2017 ◽  
Vol 9 (1-3) ◽  
Author(s):  
Syed Hamid Hussain Madni ◽  
Muhammad Shafie Abd Latiff ◽  
Shafi’i Muhammad Abdulhamid

Effective resource scheduling is essential for the overall performance of cloud computing system. Resource scheduling problem in IaaS cloud computing is investigated in this paper. It is established to be an NP-hard problem. A recently developed Cuckoo Search (CS) meta-heuristic algorithm is proposed in this paper, to minimize the response time, makespan and throughput for the resource scheduling in IaaS cloud computing. Simulation results show that CS algorithm outperforms that of Ant Colony Optimization (ACO) algorithm based on the considered parameters. 


Sign in / Sign up

Export Citation Format

Share Document