In vitro selection of glyphosate-tolerant variants from long-term callus cultures of Zoysia matrella [L.] Merr

2012 ◽  
Vol 111 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Shu Chen ◽  
Mingliang Chai ◽  
Yufang Jia ◽  
Zhongshan Gao ◽  
Li Zhang ◽  
...  
2021 ◽  
Vol 875 (1) ◽  
pp. 012082
Author(s):  
O S Mashkina ◽  
T M Tabatskaya ◽  
O M Korchagin

Abstract In vitro modelling of stress is one of the promising avenues for plant breeding for tolerance to negative environmental factors. In this study we examined the effect of NaCl (0.5%) on callusogenesis and morphogenesis of stem explants of different birch genotypes: Betula pendula Roth, B. pendula Roth var. carelica (Mercklin) Hämet-Ahti, B. pendula f. ‘dalecarlica’ (L.f.) Schneid., B. pubescens Ehrh. In our experiments we used pre-selected microclones from our in vitro collection on NaCl (0.2-1.0%) selective media. The clones were contrasted by the degree of their sensitivity to salinity (so-called ‘stable’ and ‘sensitive’ microclones). With the use of stem callus cultures we identified informative, simple and reproducible indicators for the selection of salt-tolerant genotypes. Among these indicators were the frequency of callus formation and the viability of callus cultures, which were significantly higher in ‘stable’ group of microclones. Polyploid birch clones (2n=4x=56, 2n=3x=42) were more resistant to salination compared to diploid clones (2n=28). Our study has shown that the selection of salt-tolerant birch lines can be based on the plants’ genetic diversity presented in the collection (various species, varieties, hybrids, polyploids) and manifested in the process of in vitro cultivation, as well as in the cellular heterogeneity of callus cultures.


2020 ◽  
Vol 65 (9-10) ◽  
pp. 3-7
Author(s):  
V. V. Gostev ◽  
Yu. V. Sopova ◽  
O. S. Kalinogorskaya ◽  
M. E. Velizhanina ◽  
I. V. Lazareva ◽  
...  

Glycopeptides are the basis of the treatment of infections caused by MRSA (Methicillin-Resistant Staphylococcus aureus). Previously, it was demonstrated that antibiotic tolerant phenotypes are formed during selection of resistance under the influence of high concentrations of antibiotics. The present study uses a similar in vitro selection model with vancomycin. Clinical isolates of MRSA belonging to genetic lines ST8 and ST239, as well as the MSSA (ATCC29213) strain, were included in the experiment. Test isolates were incubated for five hours in a medium with a high concentration of vancomycin (50 μg/ml). Test cultures were grown on the medium without antibiotic for 18 hours after each exposure. A total of ten exposure cycles were performed. Vancomycin was characterized by bacteriostatic action; the proportion of surviving cells after exposure was 70–100%. After selection, there was a slight increase in the MIC to vancomycin (MIC 2 μg/ml), teicoplanin (MIC 1.5–3 μg/ml) and daptomycin (MIC 0.25–2 μg/ml). According to the results of PAP analysis, all strains showed an increase in the area under curve depending on the concentration of vancomycin after selection, while a heteroresistant phenotype (with PAP/AUC 0.9) was detected in three isolates. All isolates showed walK mutations (T188S, D235N, E261V, V380I, and G223D). Exposure to short-term shock concentrations of vancomycin promotes the formation of heteroresistance in both MRSA and MSSA. Formation of VISA phenotypes is possible during therapy with vancomycin.


2002 ◽  
Vol 5 (6) ◽  
pp. 473-480
Author(s):  
Bentham Science Publisher A.N. Alexandrov ◽  
Bentham Science Publisher V.Yu. Alakhov ◽  
Bentham Science Publisher A.I. Miroshnikov

2000 ◽  
Vol 15 (4) ◽  
pp. 297-308 ◽  
Author(s):  
NAOZUMI TERAMOTO ◽  
YUKIO IMANISHI ◽  
YOSHIHIRO ITO

2020 ◽  
Vol 59 (20) ◽  
pp. 7968-7968
Author(s):  
Meng Liu ◽  
Jiayi Wang ◽  
Yangyang Chang ◽  
Qiang Zhang ◽  
Dingran Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document