Numerical Simulation of Solid Particle Erosion of Epoxy by Overlapping Angular Particle Impacts

2020 ◽  
Vol 68 (2) ◽  
Author(s):  
Navid Heydarzadeh Arani ◽  
Majid Eghbal ◽  
Marcello Papini
2009 ◽  
Vol 6 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Guomei Li ◽  
Yueshe Wang ◽  
Renyang He ◽  
Xuewen Cao ◽  
Changzhi Lin ◽  
...  

2014 ◽  
Vol 1065-1069 ◽  
pp. 1911-1915
Author(s):  
Bao Rui Xu ◽  
Ming Hu Jiang ◽  
Li Xin Zhao ◽  
Fang Tan ◽  
Xiao Guang Zhang

Elbow as common components in the gas pipeline fails easily to natural gas carrying solid particle erosion in the process of practical work. From the viewpoint of hydromechanics, the paper analyses the flow field distribution of manifold pressure and gas-solid trajectory by using the Gambit model and Fluent software in view of the right-angle elbow and numerical simulation of the adjacent manifold. The result obtains the situation about the manifold inner wall by the solid particle erosion wear. The simulation results show more intuitively the elbow, the most prone to erosion part in the manifold adjacent area and shape in erosion. Meanwhile, the paper analyses the factors affecting the occurrence and development of erosion.


Author(s):  
Ri Zhang ◽  
Haixiao Liu

Solid particle erosion in piping systems is a serious concern of integrity management in the oil and gas production, which has been widely predicted by the numerical simulation method. In the present work, every step of the comprehensive procedure is verified when applied to predicting the bend erosion for gas flow, and improvements are made by comparing different computational models. Firstly, five turbulent models are implemented to model the flow field in a 90 degree bend for gas flow and examined by the static pressure and velocity profile measured in experiments. Secondly, the particle velocities calculated by fully coupling and one-way coupling are compared with experimental data. Finally, based on the knowledge of flow modeling and particle tracking, four classic erosion equations are introduced to calculate the penetration rates in a 90 degree bend. By comparing with the experimental data available in the literature, it indicates that the k–ε model is the most accurate and effective turbulent model for gas pipe flow; the fully coupling makes the simulation of particle motion closer to measured data; and the Grant and Tabakoff equation presents better performance than other equations.


Sign in / Sign up

Export Citation Format

Share Document