Volume 6A: Pipeline and Riser Technology
Latest Publications


TOTAL DOCUMENTS

64
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791845462

Author(s):  
José Renato M. de Sousa ◽  
Carlos Magluta ◽  
Ney Roitman ◽  
George C. Campello

This work focuses on the structural analysis of a damaged 9.13″ flexible pipe to pure and combined axisymmetric loads. A set of experimental tests was carried out considering one up to ten broken wires in the outer tensile armor of the pipe and the results obtained are compared to those provided by a previously presented finite element (FE) model and a traditional analytical model. In the experimental tests, the pipe was firstly subjected to pure tension and, then, the responses to clockwise and anti-clockwise torsion superimposed with tension were investigated. In these tests, the induced strains in the outer armor were measured. Moreover, the axial elongation of the pipe was monitored when the pipe is subjected to tension, whilst the twist of the pipe was measured when torsion is imposed. The experimental results pointed to a slight decrease in the stiffness of the pipe with the increasing number of broken wires and, furthermore, a redistribution of forces among the intact wires of the damaged layer with high stress concentration in the wires close to the damaged ones. Both theoretical models captured these features, but, while the results obtained with the FE model agreed well with the experimental measurements, the traditional analytical model presented non-conservative results. Finally, the results obtained are employed to estimate the load capacity of the pipe.


Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


Author(s):  
Tomoya Inoue ◽  
Tokihiro Katsui ◽  
Chang-Kyu Rheem ◽  
Zengo Yoshida ◽  
Miki Y. Matsuo

Stick-slip is a major problem in offshore drilling because it may cause damage to the drill bit as well as crushing or grinding the sediment layer, which is crucial problem in scientific drilling because the purpose of the scientific drilling is to recover core samples from the layers. To mitigate stick-slip, first of all it is necessary to establish a model of the torsional motion of the drill bit and express the stick-slip phenomenon. Toward this end, the present study proposes a model of torsional waves propagating in a drillstring. An analytical model is developed and used to derive a neutral delay differential equation (NDDE), a special type of equation that requires time history, and an analytical model of stick-slip is derived for friction models between the drill bit and the layer as well as the rotation speed applied to the uppermost part of the drill string. In this study, the stick-slip model is numerically analyzed for several conditions and a time series of the bit motions is obtained. Based on the analytical results, the appearance of stick-slip and its severity are discussed. A small-scale model experiment was conducted in a water tank to observe the stick-slip phenomenon, and the result is discussed with numerical analysis. In addition, utilizing surface drilling data acquired from the actual drilling operations of the scientific drillship Chikyu, occurrence of stick-slip phenomenon is discussed.


Author(s):  
Shamsoon Fareed ◽  
Ian May

Accidental loads, for example, due to heavy dropped objects, impact from the trawl gear and anchors of fishing vessels can cause damage to pipelines on the sea bed. The amount of damage will depend on the impact energy. The indentation will be localized at the contact area of the pipe and the impacting object, however, an understanding of the extent of the damage due to an impact is required so that if one should occur in practice an assessment can be made to determine if remedial action needs to be taken to ensure that the pipeline is still serviceable. There are a number of parameters, including the pipe cross section and impact energy, which influence the impact behaviour of a pipe. This paper describes the response, and assesses the damage, of mild steel pipes under high mass low velocity impacts. For this purpose full scale impacts tests were carried out on mild steel pipe having diameter of 457 mm, thickness of 25.4 mm and length of 2000 mm. The pipe was restrained along the base and a 2 tonnes mass with sharp impactor having a vertical downward velocity of 3870 mm/sec was used to impact the pipe transversely with an impact energy of 16 kJ. It was found from the impact tests that a smooth indentation was produced in the pipe. The impact tests were then used for validation of the non-linear dynamic implicit analyses using the finite element analysis software ABAQUS. Deformations at the impact zone, the rebound velocity, etc, recorded in the tests and the results of the finite element analysis were found to be in good agreement. The impact tests and finite element analyses described in this paper will help to improve the understanding of the response of steel pipes under impact loading and can be used as a benchmark for further finite element modelling of impacts on pipes.


Author(s):  
Facheng Wang ◽  
Ming Gao ◽  
Jun Wang ◽  
Yigong Zhang ◽  
Xu Jia ◽  
...  

Developments of oil and gas reservoirs in Bohai Sea, South China Sea etc., are presently accelerated, to cope with the significant increase in energy demand from the mainland, China. In recent developments in Bohai Sea, fluid temperature and pressure have been found dramatically being increased up to 100 °C and 20 MPa respectively. The fact that High Temperature and High Pressure (HTHP) in Bohai area brings design challenges, especially to jacket risers and spool pieces. Pipe-in-Pipe (PIP) flowline systems have been widely employed in this region and are continuously being considered for further developments. This is due to its significant thermal insulation capacity to deal with the High Temperature and High Pressure (HTHP) issue. To cope with the challenges induced by HPHT and structural complexity of PIP, COTEC Offshore Engineering Solutions, together with its mother company, China Offshore Oil Engineering Company, have developed a approach by using ABAQUS and AutoPIPE. This paper describes the relevant experience obtained during one development in Bohai Sea, BZ34-2/4 project containing dozens of risers and spool pieces. Two main parts are presented. Firstly, a beam-element based expansion calculation model adopting ABAQUS has been developed to achieve accurate HPHT induced expansions. The structural behavior of PIP can be represented in the developed model, meanwhile with minimum increase in modeling complexity. Secondly, practical and extensive parametric studies have been carried on the riser and spool flexibility against HPHT induced expansions. Since Bohai Sea has been developed extensively, many risers are post-installed and the existing of restriction areas practically enlarges the difficulties of anchor clamp and spool arrangements. Key parameters of these arrangements, such as Z/L shape, the length between two bends, the combinations of bend angles, the length of protection pipe on the riser etc. have been comprehensively investigated. “Gold” rules for rigid riser accessories arrangements and spool piece layout have been suggested accordingly.


Author(s):  
Soheil Manouchehri ◽  
Guillaume Hardouin ◽  
David Kaye ◽  
Jason Potter

Pipe-In-Pipe (PIP) systems are increasingly used in subsea oil and gas production where a low Overall Heat Transfer Coefficient (OHTC) is required. A PIP system is primarily composed of an insulated inner pipe which carries the production fluid and an outer pipe that protects the insulation material from the seawater environment. This provides a dry environment within the annulus and therefore allows the use of high quality dry insulation system. In addition, from a safety point of view, it provides additional structural integrity and a protective barrier which safeguards the pipeline from loss of containment to the environment. Genesis has designed a number of PIP systems in accordance with the recognized subsea pipeline design codes including DNV-OS-F101 [1]. In section 13 F100 of the 2013 revision, a short section has been included in which PIP systems are discussed and overall design requirements for such systems are provided. It has also been stated that the inner and outer pipes need to have the same Safety Class (SC) unless it can be documented otherwise. This paper looks at the selection of appropriate SC for the outer pipe in a design of PIP systems based on an assessment of different limit states, associated failure modes and consequences. Firstly, the fundamentals of selecting an acceptable SC for a PIP system are discussed. Then, different limit states and most probable failure modes that might occur under operational conditions are examined (in accordance with the requirements of [1]) and conclusions are presented and discussed. It is concluded that the SC of the outer pipe of a PIP system may be lower than that of the inner pipe, depending on the failure mode and approach adopted by the designer.


Author(s):  
Gerhard Gundersen ◽  
Rolf Hugo Kirkvik ◽  
Christopher Hoen-Sorteberg

Critical sections of work over strings, with respect to integrity, are components located close to end terminations, near well heads and above drill floors, where recurring bending moments are prevalent. The lifetime of these components are strongly dependent on the stiffness in the components of the string. Connections between these components are often complex, and of a type where the stiffness is unknown, or hard to reveal based on theoretical analysis. This paper considers the feasibility of applying state-of-the-art measurement technology for testing of the physical behavior of specific connections on a landing string to be used for work over operations in harsh environmental conditions, where low fatigue life of components have proven to be a recurring problem. Behavior of joint-connections revealed through measured response from physical testing serve as input for the global finite element (FE) analysis, where accumulated fatigue damage for each sea state is calculated based on site specific met-ocean data. The present work was carried out in advance of an operation on the Norwegian shelf, where a four-point bending test of the actual landing string to be used during the offshore campaign were performed on a section containing two critical couplings, in order to reveal the actual stiffness of the connections. The test string was subject to variable internal pressure, axial tension and bending loads, representative for the applicable work-over riser operational loads. The performance of the system was monitored through strain, displacement and force sensors, in order to relate applied loads to structural response. The results from these tests where later recreated from local FE analysis, where non linear springs was implemented and modified to fit the experimental results at the connections of interest. These springs was later input to the global fatigue analysis, where the complete system, including marine riser and inner work over string, was implemented in one model. Results from the fatigue assessment where used to determine the operational criteria for the work over operations.


Author(s):  
Sirous Yasseri

Numerous leak detection systems (LDS) using a variety of technologies are on the market. Since LDS are designed for a particular use, then the evaluation and selection process requires suitable metrics and involvement from all stakeholders. This paper proposes to use15 criteria for selection of LDS. Each criterion is first rated for their importance by a number of experts. Then, the same experts are asked to rate a list of candidate LDSs. Fuzzy TOPSIS is used to aggregate Experts’ judgment. A case study is presented to demonstrate the application of the method. This method would indicate how a good compromise might look like. This could aid the decision-maker to weigh options and set priority and decide on a system.


Author(s):  
Eduardo Ribeiro Malta ◽  
Clóvis de Arruda Martins

Axial compressive loads can appear in several situations during the service life of a flexible pipe, due to pressure variations during installation or due to surface vessel heave. The tensile armor withstands well tension loads, but under compression, instability may occur. A Finite Element model is constructed using Abaqus in order to study a flexible pipe compound by external sheath, two layers of tensile armor, a high strength tape and a rigid nucleus. This model is fully tridimensional and takes into account all kinds of nonlinearities involved in this phenomenon, including contacts, gaps, friction, plasticity and large displacements. It also has no symmetry or periodical limitations, thus permitting each individual wire of the tensile armor do displace in any direction. Case studies were performed and their results discussed.


Author(s):  
Yanqiu Zhang ◽  
Zhimin Tan ◽  
Yucheng Hou ◽  
Jiabei Yuan

A study was conducted to have a deeper understanding to the statistical characteristics of response of flexible riser in global dynamic simulation with irregular wave. If consider the numerical simulation model as a system and the input wave train as an excitation to it, the time histories of riser load should be the response of the system to the excitation. In order to look the effect of riser configuration and water depth, the study was conducted with three kinds of configuration: Free-Hanging, Lazy-S and Tethered-Wave, which were in different water depths. In order to examine the stationarity and ergodicity of riser response, 100 simulations were performed. Each simulation was performed with a 3-hours-long storm. Except the seeds used to generate the random phases to the wave components, the 100 irregular wave processes for each riser are completely the same. When the number of wave components is enough large, the input irregular wave train should be a stationary normal process. Since the software used for the dynamic simulation is high nonlinear, however, the time history of riser response may not be perfectly stationary normal process. Then different probability distribution theories were applied to fit these time histories and the most fitting one was found out for different riser responses and for different riser configurations. The ensemble autocorrelation functions and the time autocorrelation functions were also examined for both irregular waves and the riser responses. Then the study indicated that both irregular waves and riser responses as random processes should be ergodic stationary. Finally the cross correlations between the irregular waves and riser responses were also examined and it was found that the irregular wave for each riser should be jointly stationary with each response of the riser.


Sign in / Sign up

Export Citation Format

Share Document