Lubricant Effects on Articular Cartilage Sliding Biomechanics Under Physiological Fluid Load Support

2021 ◽  
Vol 69 (2) ◽  
Author(s):  
Margot S. Farnham ◽  
Kyla F. Ortved ◽  
Jeffrey S. Horner ◽  
Norman J. Wagner ◽  
David L. Burris ◽  
...  
2019 ◽  
Vol 142 (2) ◽  
Author(s):  
Hyeon Lee ◽  
William D. Campbell ◽  
Kelcie M. Theis ◽  
Margaret E. Canning ◽  
Hannah Y. Ennis ◽  
...  

Abstract Fresh and frozen cartilage samples of the fetlock, carpus, and stifle were collected from 12 deceased horses. Half were measured immediately following extraction, and half were frozen for seven days and then measured. Seven indentations (various normalized displacements) were implemented with an indention rate of 0.1 mm/s. Solid phase aggregate modulus (Es), hyperelastic material constant (α), and fluid load fraction (F′) of equine articular cartilage were assessed using the Ogden hyperelastic model. The properties were statistically compared in various joints (fetlock, carpus, and stifle), and between fresh and frozen samples using various statistical models. There was no statistical difference between the fetlock and carpus in the aggregate modulus (p = 0.5084), while both were significantly different from the stifle (fetlock: p = 0.0017 and carpus: p = 0.0406). For the hyperelastic material constant, no statistical differences between joints were observed (p = 0.3310). For the fluid load fraction, the fetlock and stifle comparison showed a difference (p = 0.0333), while the carpus was not different from the fetlock (p = 0.1563) or stifle (p = 0.3862). Comparison between the fresh and frozen articular cartilage demonstrated no significant difference among the joints in the three material properties: p = 0.9418, p = 0.7031, and p = 0.9313 for the aggregate modulus, the hyperelastic material constant, and the fluid load fraction, respectively.


Author(s):  
Seonghun Park ◽  
Ramaswamy Krishnan ◽  
Steven B. Nicoll ◽  
Gerard A. Ateshian

Under physiological conditions of loading, articular cartilage is subjected to both compressive strains, normal to the articular surface, and tensile strains, tangential to the articular surface. Previous studies have shown that articular cartilage exhibits a much higher modulus in tension than compression. Theoretical analyses have suggested that this tension-compression nonlinearity enhances the magnitude of interstitial fluid pressurization during loading in unconfined compression, above a theoretical threshold of 33% of the average applied stress. The first hypothesis of this experimental study is that the peak fluid load support in unconfined compression is significantly greater than the 33% theoretical limit predicted for porous permeable tissues modeled with equal moduli in tension and compression [1]. The second hypothesis is that the peak fluid load support is higher at the articular surface side of the tissue samples than near the deep zone, because the disparity between the tensile and compressive moduli is greater at the surface zone.


2003 ◽  
Vol 125 (5) ◽  
pp. 585-593 ◽  
Author(s):  
Michael A. Soltz ◽  
Ines M. Basalo ◽  
Gerard A. Ateshian

This study presents an analysis of the contact of a rippled rigid impermeable indenter against a cartilage layer, which represents a first simulation of the contact of rough cartilage surfaces with lubricant entrapment. Cartilage was modeled with the biphasic theory for hydrated soft tissues, to account for fluid flow into or out of the lubricant pool. The findings of this study demonstrate that under contact creep, the trapped lubricant pool gets depleted within a time period on the order of seconds or minutes as a result of lubricant flow into the articular cartilage. Prior to depletion, hydrostatic fluid load support across the contact interface may be enhanced by the presence of the trapped lubricant pool, depending on the initial geometry of the lubricant pool. According to friction models based on the biphasic nature of the tissue, this enhancement in fluid load support produces a smaller minimum friction coefficient than would otherwise be predicted without a lubricant pool. The results of this study support the hypothesis that trapped lubricant decreases the initial friction coefficient following load application, independently of squeeze-film lubrication effects.


Author(s):  
Ramaswamy Krishnan ◽  
Gerard A. Ateshian

Articular cartilage functions as the bearing material in joints and provides low friction and wear over a lifetime. The cartilage lubrication mechanism has not yet been fully characterized though several theories have been proposed. In previous studies [1–3] it was hypothesized that interstitial fluid load support contributes significantly to the reduction of the frictional coefficient due to load transfer from the solid to the fluid phase of the tissue. This study provides experimental verification for a theoretical model based on this hypothesis [1,4]. The specific aim of this study is to experimentally investigate the correlation between the frictional response of bovine articular cartilage, and its interstitial fluid load support during sliding against glass under a constant load.


1999 ◽  
Vol 12 (02) ◽  
pp. 56-63 ◽  
Author(s):  
C. R. Bellenger ◽  
P. Ghosh ◽  
Y. Numata ◽  
C. Little ◽  
D. S. Simpson

SummaryTotal medial meniscectomy and caudal pole hemimeniscectomy were performed on the stifle joints of twelve sheep. The two forms of meniscectomy produced a comparable degree of postoperative lameness that resolved within two weeks of the operations. After six months the sheep were euthanatised and the stifle joints examined. Fibrous tissue that replaced the excised meniscus in the total meniscectomy group did not cover as much of the medial tibial condyle as the residual cranial pole and caudal fibrous tissue observed following hemimeniscectomy. The articular cartilage from different regions within the joints was examined for gross and histological evidence of degeneration. Analyses of the articular cartilage for water content, glycosaminoglycan composition and DNA content were performed. The proteoglycan synthesis and release from explanted articular cartilage samples in tissue culture were also measured. There were significant pathological changes in the medial compartment of all meniscectomised joints. The degree of articular cartilage degeneration that was observed following total meniscectomy and caudal pole meniscectomy was similar. Caudal pole hemimeniscectomy, involving transection of the meniscus, causes the same degree of degeneration of the stifle joint that occurs following total meniscectomy.The effect of total medial meniscectomy versus caudal pole hemimeniscectomy on the stifle joint of sheep was studied experimentally. Six months after the operations gross pathology, histopathology, cartilage biochemical analysis and the rate of proteoglycan synthesis in tissue culture were used to compare the articular cartilage harvested from the meniscectomised joints. Degeneration of the articular cartilage from the medial compartment of the joints was present in both of the groups. Caudal pole hemimeniscectomy induces a comparable degree of articular cartilage degeneration to total medial meniscectomy in the sheep stifle joint.


2018 ◽  
Author(s):  
Grischa Bratke ◽  
Steffen Willwacher ◽  
David Maintz ◽  
Gert-Peter Brüggemann

Sign in / Sign up

Export Citation Format

Share Document