Shakedown Analysis of Evolving Non-Hertzian Rolling Contact Using a Semi-analytical Numerical Model

2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Yaswanth Sai Jetti ◽  
Alison C. Dunn
2014 ◽  
Vol 658 ◽  
pp. 317-322 ◽  
Author(s):  
George Gavrila ◽  
Spiridon Cretu ◽  
Marcelin Benchea

This paper presents a numerical model to calculate wear during rolling contact due to micro-slip. Having as initial condition a corrugated rail it is shown the influence of the corrugation wavelength and the dynamic effects of the normal force on the wear creation. Experimental results are presented in order to reveal the influence of roughness when studying the stick-slip phenomenon.


2021 ◽  
Vol 69 (4) ◽  
Author(s):  
Yinhu Xi ◽  
Marcus Björling ◽  
Andreas Almqvist

AbstractIn this work, a numerical model is proposed for three-dimensional rolling contact problems with one or two elastic layers, and the tangential contact solution is emphasized. Previous works on this topic have mostly been two-dimensional, in which only longitudinal creepage has been considered. With the three-dimensional model presented in this work, all possible creepages, such as the longitudinal, lateral and spin creepages are taken into account. In order to improve the calculation efficiency, the conjugate gradient method and the FFT technique are employed. The influence coefficients for displacement and stress are obtained from the corresponding frequency response functions. The numerical results are validated against existing results and good agreement can be found. The effects of the different layers’ thicknesses and elastic moduli under different creepage combinations on the traction distribution and stick/slip results are investigated. It can be seen that by adjusting the layer parameters the traction and stick/slip results can be modified significantly, and it may, therefore, be very useful information for improving the rolling contact fatigue and mitigating wear problems in various mechanical systems. Graphical Abstract


2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.


2015 ◽  
Vol 35 ◽  
pp. 268-271
Author(s):  
Michele Saroli ◽  
Michele Lancia ◽  
Marco Petitta ◽  
Gabriele Scarascia Mugnozza

Sign in / Sign up

Export Citation Format

Share Document