NUMERICAL MODEL TO SIMULATE THE EROSION ON THE SLOPE DUE TO OVERTOPPING

2010 ◽  
Vol 13 (3) ◽  
pp. 78-87
Author(s):  
Hoai Cong Huynh

The numerical model is developed consisting of a 1D flow model and the morphological model to simulate the erosion due to the water overtopping. The step method is applied to solve the water surface on the slope and the finite difference method of the modified Lax Scheme is applied for bed change equation. The Meyer-Peter and Muller formulae is used to determine the bed load transport rate. The model is calibrated and verified based on the data in experiment. It is found that the computed results and experiment data are good agreement.

1984 ◽  
Vol 144 ◽  
pp. 177-190 ◽  
Author(s):  
B. Mutlu Sumer ◽  
Mehmet Bakioglu

A linear stability analysis is presented of both hydraulically smooth and transitional flows over an erodible bed. The present theory is developed to account for the formation of ripples. It is essentially an extension of the theory of Richards (1980) to include the effect of viscosity upon the bed wave stability. The theory takes into consideration that the formation of ripples does not depend on flow depths, and that only the bed-load transport is involved in the formation of ripples. The effect of gravity is included in the analysis through the local inclination of the wavy bed surface. The results show that the bed is unstable (i.e. ripples exist) when the grain Reynolds number is less than a certain value. The limiting values of the grain Reynolds number for ripple existence obtained through present analysis are found to be in good agreement with observations.


2020 ◽  
Vol 8 (3) ◽  
pp. 160
Author(s):  
Jie Zhang ◽  
Magnus Larson

A numerical model was developed to simulate the evolution of a mound placed in the offshore (i.e., outside the zone of wave breaking), exposed to varying non-breaking waves and water levels. The net sediment transport rate is assumed to be mainly dominated by bed load transport, where wave asymmetry plays an important role. The net transport over a wave cycle is expressed with reference to an equilibrium profile, which ensures model reliability and robustness. In order to validate the model, data collected at two field sites, Cocoa Beach and Perdido Key Beach in Florida, USA, were employed. The numerical results show good agreement with the measured data from the two sites in terms of the profile evolution. It demonstrates that the model has the capability to simulate the evolution of mounds placed in the offshore. In addition, several scenarios with different mound volume and location designs were investigated to indicate potential uses for the model. The results illustrate how the mound evolution is influenced by the volume and location of the mound placement.


1980 ◽  
Vol 99 (3) ◽  
pp. 597-618 ◽  
Author(s):  
Kelvin J. Richards

A two-dimensional stability analysis is presented of flow of low Froude number over an erodible bed. Particular regard is given to the modelling of the turbulent flow close to the bed. In contrast to previous theories that use a constant eddy-viscosity approach the present theory predicts the occurrence of two separate modes of instability, with wavelengths related to the roughness of the bed and the depth of the flow. It is postulated that these two modes correspond to the formation of ripples and dunes respectively. The results are strongly dependent on the two parameters z0, the roughness length of the bed, and β, the effect of the local bed slope on the bed-load transport. Using physically plausible estimates for these parameters the results of the analysis are in good agreement with observations for both ripples and dunes.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1425 ◽  
Author(s):  
Ming Luo ◽  
Heli Yu ◽  
Er Huang ◽  
Rui Ding ◽  
Xin Lu

Numerical modeling of sedimentation and erosion in reservoirs is an active field of reservoir research. However, simulation of the bed-load transport phenomena has rarely been applied to other water bodies, in particular, the fluctuating backwater area. This is because the complex morphological processes interacting between hydrodynamics and sediment transport are generally challenging to accurately predict. Most researchers assert that the shape of a river channel is mainly determined by the upstream water and sediment, and the physical boundary conditions of the river channel, rather than random events. In this study, the refinement and application of a two-dimensional shallow-water and bed-load transport model to the fluctuating backwater area is described. The model employs the finite volume method of the Godunov scheme and equilibrium sediment transport equations. The model was verified using experimental data produced by a scaled physical model, and the results indicated that the numerical model is believable. The numerical model was then applied to actual reservoir operations, including reservoir storage, reservoir drawdown, and the continuous flood process, to predict the morphology of reservoir sedimentation and sediment transport rates, and the changes in bed level in the fluctuating backwater area. It was found that the location and morphology of sedimentation affected by the downstream water level result in random evolution of the river bed, and bed-load sedimentation is moved from upstream to downstream as the slope of the longitudinal section of the river bed is reduced. Moreover, the research shows that the river channel sedimentation morphology is changed by the change water level of the downstream reach, causing the dislocation of the beach and channel and random events that will affect the river, which is of certain reference value for waterway regulation.


1996 ◽  
Vol 40 ◽  
pp. 813-818
Author(s):  
Minoru HARADA ◽  
Kazuo ASHIDA ◽  
Takashi DENO ◽  
Yuji OHMOTO

Sign in / Sign up

Export Citation Format

Share Document