Determination of some body measurements of camels with three-dimensional modeling method (3D)

2021 ◽  
Vol 53 (6) ◽  
Author(s):  
A. Çağlı ◽  
M. Yılmaz
2021 ◽  
Author(s):  
Alkan çağlı ◽  
M. Yılmaz

Abstract In this study, the use of three-dimensional modeling method was tested in taking some body measurements in camels with a practical method and was compared with other measurement methods. As the animal material of the study, 12 single humped dromedary female camels and 14 double humped Camelus dromedarius X Camelus bactrianus: F1 male camels, totally 26 camels, were used in three camel farms in Incirliova district of Aydın province. The body measurements taken from each animal by using different three methods, namely by Manuel Method (MM), by Photography Method (PM), and by Three Dimensional Modeling Method (3D) were the Cidago Height (CH), the Back Height (BH), the Rump Height (RH), the Body Length (BL), the Brisket Height (BRH), the Abdominal Height (AH), the Shoulder Width (SW) and the Rump Width (RW) and these values were compared with each other. As a result of this study, the mean values of MM and 3D measurement values were very close to each other and the difference between them was found to be statistically insignificant. (P<0.05). The difference between the means of PM and MM/3D measurement values was found to be significant. (P <0.05). In the measurements taken by MM, 3D, PM methods in male camels, the values obtained by MM and 3D methods for CH, BH, RH, BRH, AH, BL, and SW were very close to each other and the differences between them were found insignificant statistically (p < 0.05). On the determined regression graph, a linear was found between MM and 3D measurement values. As a result of this study, it has been determined that the 3D modeling method can be used as a remote and more practical method in determining the morphological features of large-scale animals such as camels more reliably, more easily and more practically.


2014 ◽  
Vol 8 (1) ◽  
pp. 323-329 ◽  
Author(s):  
Wang Yujian ◽  
Tan Shaowei ◽  
Dong Weiwei ◽  
Jing Wenpeng

With studying deeply of the three-dimensional modeling method, this paper proposed a hybrid data model which based on Octree,the four fork tree and NURBS. The characteristic of fast convergence of Octree is used to segment the 3D entity. Describe the irregular surface of entity by NURBS, and restructure the local mesh surface. The model uses the mixture data structure of Octree and four fork tree to restructure mesh surface gradually. The storage structure is the Octree structure type; establish Hash table based on octal prefix code. Finally, an experimental model system is designed by using OpenGL. The feasibility and effectiveness of the algorithm has been verified.


China Foundry ◽  
2019 ◽  
Vol 16 (4) ◽  
pp. 248-255 ◽  
Author(s):  
Ming-si Qi ◽  
Wei Zhang ◽  
Jun-yuan Wang ◽  
Guang-ming Ren ◽  
Yi-ping Yin ◽  
...  

2018 ◽  
Vol 6 (3) ◽  
pp. 33-48 ◽  
Author(s):  
Л. Жихарев ◽  
L. Zhikharev

One of the most important characteristics of a fractal is its dimensionality. In general, there are several options for mathematical definition of this value, but usually under the object dimensionality is understood the degree of space filling by it. It is necessary to distinguish the dimensionality of space and the dimension of multitude. Segment, square and cube are objects with dimensionality 1, 2 and 3, which can be in respective spaces: on a straight line, plane or in a 3D space. Fractals can have a fractional dimensionality. By definition, proposed by Bernois Mandelbrot, this fractional dimensionality should be less than the fractal’s topological dimension. Abram Samoilovich Bezikovich (1891–1970) was the author of first mathematical conclusions based on Felix Hausdorff (1868–1942) arguments and allowing determine the fractional dimensionality of multitudes. Bezikovich – Hausdorff dimensionality is determined through the multitude covering by unity elements. In practice, it is more convenient to use Minkowsky dimensionality for determining the fractional dimensionalities of fractals. There are also numerical methods for Minkowsky dimensionality calculation. In this study various approaches for fractional dimensionality determining are tested, dimensionalities of new fractals are defined. A broader view on the concept of dimensionality is proposed, its dependence on fractal parameters and interpretation of fractal sets’ structure are determined. An attempt for generalization of experimental dependences and determination of general regularities for fractals structure influence on their dimensionality is realized. For visualization of three-dimensional geometrical constructions, and plain evidence of empirical hypotheses were used computer models developed in the software for three-dimensional modeling (COMPASS, Inventor and SolidWorks), calculations were carried out in mathematical packages such as Wolfram Mathematica.


Sign in / Sign up

Export Citation Format

Share Document