Fire regimes and shifting community patterns: a case study and method for species with complex fire requirements

Plant Ecology ◽  
2018 ◽  
Vol 219 (12) ◽  
pp. 1503-1518
Author(s):  
David A. Tierney
Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 481 ◽  
Author(s):  
Kevin Nyongesa ◽  
Harald Vacik

This paper proposes an Integrated Fire Management (IFM) framework that can be used to support communities and resource managers in finding effective and efficient approaches to prevent damaging fires, as well as to maintain desirable fire regimes in Kenya. Designing and implementing an IFM approach in Kenya calls for a systematic understanding of the various uses of fire and the underlying perceptions and traditional ecological knowledge of the local people. The proposed IFM framework allows different stakeholders to evaluate the risks posed by fires and balance them with their beneficial ecological and economic effects making it easier for them to develop effective fire management approaches. A case study of the proposed IFM framework was conducted in Gathiuru Forest, which that is part of the larger Mt. Kenya Forest Ecosystem. Focus group discussions were held with key resource persons, primary and secondary data on socio-economic activities was studied, fire and weather records were analysed and the current fire management plans were consulted. Questionnaires were used to assess how the IFM is implemented in the Gathiuru Forest Station. The results show that the proposed IFM framework is scalable and can be applied in places with fire-dependent ecosystems as well as in places with fire-sensitive ecosystems in Kenya. The effectiveness of the proposed IFM framework depends on the active participation, formulation and implementation of the IFM activities by the main stakeholder groups (Kenya Forest Service (KFS), Kenya Wildlife Service (KWS), and the Community Forest Associations (CFA). The proposed IFM framework helps in implementing cost-effective approaches to prevent damaging fires and maintain desirable fire regimes in Kenya.


2021 ◽  
Author(s):  
Yicheng Shen ◽  
Luke Sweeney ◽  
Mengmeng Liu ◽  
Jose Antonio Lopez Saez ◽  
Sebastián Pérez-Díaz ◽  
...  

Abstract. Charcoal accumulated in lake, bog or other anoxic sediments through time has been used to document the geographical patterns in changes in fire regimes. Such reconstructions are useful to explore the impact of climate and vegetation changes on fire during periods when the human influence was less prevalent than today. However, charcoal records only provide semi-quantitative estimates of change in biomass burning. Here we derive quantitative estimates of burnt area from vegetation data in two stages. First, we relate the modern charcoal abundance to burnt area using a conversion factor derived from a generalized linear model of burnt area probability based on eight environmental predictors. Then, we establish the relationship between fossil pollen assemblages and burnt area using Tolerance-weighted Weighted Averaging Partial Least-Squares with sampling frequency correction (fxTWA-PLS). We test this approach using the Iberian Peninsula as a case study because it is a fire-prone region with abundant pollen and charcoal records covering the Holocene. We derive the vegetation-burnt area relationship using the 29 records that have both modern and fossil charcoal and pollen data, and then reconstruct palaeo-burnt area for the 114 records with Holocene pollen records. The pollen data predict charcoal abundances through time relatively well (R2 = 0.47) and the changes in reconstructed burnt area are synchronous with known climate changes through the Holocene. This new method opens up the possibility of reconstructing changes in fire regimes quantitatively from pollen records, which are far more numerous than charcoal records.


2021 ◽  
Vol 9 ◽  
Author(s):  
Emma Rehn ◽  
Cassandra Rowe ◽  
Sean Ulm ◽  
Patricia Gadd ◽  
Atun Zawadzki ◽  
...  

Paleoecology has demonstrated potential to inform current and future land management by providing long-term baselines for fire regimes, over thousands of years covering past periods of lower/higher rainfall and temperatures. To extend this potential, more work is required for methodological innovation able to generate nuanced, relevant and clearly interpretable results. This paper presents records from Cape York Peninsula, Queensland, Australia, as a case study where fire management is an important but socially complex modern management issue, and where palaeofire records are limited. Two new multiproxy palaeofire records are presented from Sanamere Lagoon (8,150–6,600 cal BP) and Big Willum Swamp (3,900 cal BP to present). These records combine existing methods to investigate fire occurrence, vegetation types, and relative fire intensity. Results presented here demonstrate a diversity of fire histories at different sites across Cape York Peninsula, highlighting the need for finer scale palaeofire research. Future fire management planning on Cape York Peninsula must take into account the thousands of years of active Indigenous management and this understanding can be further informed by paleoecological research.


Author(s):  
Kevin W. Nyongesa ◽  
Harald Vacik

This paper proposes an Integrated Fire Management (IFM) framework that can be used to support communities and resource managers in finding effective and efficient approaches to prevent damaging fires, as well as maintain desirable fire regimes in Kenya. Designing and implementing an IFM approach in Kenya calls for a systematic understanding of the various uses of fire and the underlying perceptions and traditional ecological knowledge of the local people. The here proposed IFM framework allows an evaluation of the risks posed by fires, while balancing them with their beneficial ecological and economic effects, and thus developing effective fire management approaches. A case study of the proposed IFM framework was conducted in Gathiuru Forest that is part of the larger Mt. Kenya Forest Ecosystem. Focus group discussions were held with key resource persons, primary and secondary data on socio-economic activities were studied, fire and weather records were analyzed and the current fire management plans were consulted. Questionnaires were used to assess how the IFM is implemented in the Gathiuru Forest Station. The results show that the proposed IFM framework is scalable and can be applied in places with fire-dependent ecosystems as well as in places with fire-sensitive ecosystems in Kenya. The effectiveness is dependent on the active participation, formulation and implementation of the IFM activities by the main stakeholder groups (Kenya Forest Service (KFS), Kenya Wildlife Service (KWS), and the Community Forest Associations (CFA)). The proposed IFM framework helps in implementing cost-effective approaches to prevent damaging fires and maintain desirable fire regimes in Kenya.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-12
Author(s):  
Taylor J. Senegal ◽  
Elizabeth A. Flaherty

Natural resource managers often use quantitative methods to characterize and manage ecosystems. A firm understanding of these methods, ranging from simple counts to complex models, is critical in conducting accurate population and community assessments. Students can gain an advantage in understanding these methods through early exposure and contextual examples. This fictional case study follows three American Fisheries Society club members who perform an ecological assessment of a landowner’s ponds. The club members use multiple sampling methods and analyses to answer the landowner’s questions. In this study, students are introduced to common assessment metrics, such as community patterns (richness, diversity, evenness, and similarity), abundance estimates (mark-recapture, depletion, swept-area, and line-transect), size structure (proportional stock density), and growth estimates (absolute, relative, and instantaneous growth rates; von Bertalanffy growth model). Students will also interpret results and identify physical or biological factors that may influence those results. After completing this case study, students will be able to describe the need for population and community assessments and apply these assessments to various scenarios.


2013 ◽  
Vol 43 (9) ◽  
pp. 836-845 ◽  
Author(s):  
Ken Olaf Storaunet ◽  
Jørund Rolstad ◽  
Målfrid Toeneiet ◽  
Ylva-li Blanck

To better understand the historic range of variability in the fire regime of Fennoscandian boreal forests we cross-dated 736 fire scars of remnant Scots pine (Pinus sylvestris L.) wood samples in a 3.6 km2 section of the Trillemarka-Rollagsfjell Reserve of south-central Norway. Using a kernel range application in GIS we spatially delineated 57 individual forest fires between 1350 and the present. We found a strong anthropogenic signal in the fire regime from 1600 and onwards: (i) infrequent variably sized fires prior to 1600 shifted to frequent fires gradually decreasing in size during the 1600s and 1700s, with only a few small fires after 1800; (ii) time intervals between fires and the hazard of burning showed substantial differences pre- and post-1600; (iii) fire seasonality changed from late- to early-season fires from the 1626 fire and onwards; and (iv) fire severity decreased gradually over time. Written sources corroborated our results, narrating a history where anthropogenic forest fires and slash-and-burn cultivation expanded with the increasing population from the late 1500s. Concurrently, timber resources increased in value, gradually forcing slash-and-burn cultivators to abandon fires on forest land. Our results strengthen and expand previous Fennoscandian findings on the anthropogenic influence of historic fire regimes.


2014 ◽  
Vol 20 (1) ◽  
pp. 57 ◽  
Author(s):  
Barbara A Wilson ◽  
Janine Kuehs ◽  
Leonie E Valentine ◽  
Tracy Sonneman ◽  
Kristen M Wolfe

In Mediterranean ecosystems prescribed burning is commonly employed to reduce the risk or intensity of wildfires. As a consequence, a major challenge for conservation land managers is the development of fire regimes that reduce damaging wildfires and are optimal for biodiversity. The aim of this paper was to develop guidelines for ecological fire regimes using the Banksia woodland on the Gnangara Groundwater System in Western Australia as a case study. Development of the guidelines involved the determination of maximum and minimum fire intervals of key fire response species, analyses of fire history records and estimation of ideal age class distributions at the landscape level. Recommendations included a) adoption of a minimum fire interval of 8–16 years, b) implementation of a burning regime to redress the current skewed distribution (60%: 1–7 years since last fire), c) retention of long-unburnt habitats that are significant for species such as the critically endangered Calyptorhynchus latirostris (Carnaby’s black-cockatoo), and Tarsipes rostratus (honey possum), and d) protection for wetlands that can serve as fire ‘refugia’ for associated species, such as Isoodon obesulus fusciventer (southern brown bandicoot or quenda). The guidelines developed provide a model for the development of ecological burning regimes in other similar ecosystems. The implementation of ecological guidelines normally involves incorporation into fire management planning by fire agencies and often entails complex solutions to conflicting aims. The guidelines are thus valuable for ecologists and land managers, especially in light of an expected significant increase in global fire activity as a consequence of predicted climate change.


2014 ◽  
Vol 58 (1) ◽  
pp. 211-232 ◽  
Author(s):  
Johann Friedrich Tolksdorf ◽  
Falko Turner ◽  
Knut Kaiser ◽  
Eileen Eckmeier ◽  
Felix Bittmann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document