scholarly journals Auto-Calibrated Gaze Estimation Using Human Gaze Patterns

2017 ◽  
Vol 124 (2) ◽  
pp. 223-236 ◽  
Author(s):  
Fares Alnajar ◽  
Theo Gevers ◽  
Roberto Valenti ◽  
Sennay Ghebreab
Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 26
Author(s):  
David González-Ortega ◽  
Francisco Javier Díaz-Pernas ◽  
Mario Martínez-Zarzuela ◽  
Míriam Antón-Rodríguez

Driver’s gaze information can be crucial in driving research because of its relation to driver attention. Particularly, the inclusion of gaze data in driving simulators broadens the scope of research studies as they can relate drivers’ gaze patterns to their features and performance. In this paper, we present two gaze region estimation modules integrated in a driving simulator. One uses the 3D Kinect device and another uses the virtual reality Oculus Rift device. The modules are able to detect the region, out of seven in which the driving scene was divided, where a driver is gazing at in every route processed frame. Four methods were implemented and compared for gaze estimation, which learn the relation between gaze displacement and head movement. Two are simpler and based on points that try to capture this relation and two are based on classifiers such as MLP and SVM. Experiments were carried out with 12 users that drove on the same scenario twice, each one with a different visualization display, first with a big screen and later with Oculus Rift. On the whole, Oculus Rift outperformed Kinect as the best hardware for gaze estimation. The Oculus-based gaze region estimation method with the highest performance achieved an accuracy of 97.94%. The information provided by the Oculus Rift module enriches the driving simulator data and makes it possible a multimodal driving performance analysis apart from the immersion and realism obtained with the virtual reality experience provided by Oculus.


Author(s):  
Fares Alnajar ◽  
Theo Gevers ◽  
Roberto Valenti ◽  
Sennay Ghebreab

2018 ◽  
Vol 14 (2) ◽  
pp. 153-173 ◽  
Author(s):  
Jumana Waleed ◽  
◽  
Taha Mohammed Hasan ◽  
Qutaiba Kadhim Abed

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jordan Navarro ◽  
Otto Lappi ◽  
François Osiurak ◽  
Emma Hernout ◽  
Catherine Gabaude ◽  
...  

AbstractActive visual scanning of the scene is a key task-element in all forms of human locomotion. In the field of driving, steering (lateral control) and speed adjustments (longitudinal control) models are largely based on drivers’ visual inputs. Despite knowledge gained on gaze behaviour behind the wheel, our understanding of the sequential aspects of the gaze strategies that actively sample that input remains restricted. Here, we apply scan path analysis to investigate sequences of visual scanning in manual and highly automated simulated driving. Five stereotypical visual sequences were identified under manual driving: forward polling (i.e. far road explorations), guidance, backwards polling (i.e. near road explorations), scenery and speed monitoring scan paths. Previously undocumented backwards polling scan paths were the most frequent. Under highly automated driving backwards polling scan paths relative frequency decreased, guidance scan paths relative frequency increased, and automation supervision specific scan paths appeared. The results shed new light on the gaze patterns engaged while driving. Methodological and empirical questions for future studies are discussed.


2021 ◽  
Vol 78 ◽  
pp. 102827
Author(s):  
Alexandra Hildebrandt ◽  
Rouwen Cañal-Bruland

Sign in / Sign up

Export Citation Format

Share Document