scholarly journals A Camera Model for Line-Scan Cameras with Telecentric Lenses

Author(s):  
Carsten Steger ◽  
Markus Ulrich
Keyword(s):  
Author(s):  
Carsten Steger ◽  
Markus Ulrich

AbstractWe propose a novel multi-view camera model for line-scan cameras with telecentric lenses. The camera model supports an arbitrary number of cameras and assumes a linear relative motion with constant velocity between the cameras and the object. We distinguish two motion configurations. In the first configuration, all cameras move with independent motion vectors. In the second configuration, the cameras are mounted rigidly with respect to each other and therefore share a common motion vector. The camera model can model arbitrary lens distortions by supporting arbitrary positions of the line sensor with respect to the optical axis. We propose an algorithm to calibrate a multi-view telecentric line-scan camera setup. To facilitate a 3D reconstruction, we prove that an image pair acquired with two telecentric line-scan cameras can always be rectified to the epipolar standard configuration, in contrast to line-scan cameras with entocentric lenses, for which this is possible only under very restricted conditions. The rectification allows an arbitrary stereo algorithm to be used to calculate disparity images. We propose an efficient algorithm to compute 3D coordinates from these disparities. Experiments on real images show the validity of the proposed multi-view telecentric line-scan camera model.


Author(s):  
P.E. Batson ◽  
C.R.M. Grovenor ◽  
D.A. Smith ◽  
C. Wong

In this work As doped polysilicon was deposited onto (100) silicon wafers by APCVD at 660°C from a silane-arsine mixture, followed by a ten minute anneal at 1000°C, and in one case a further ten minute anneal at 700°C. Specimens for TEM and STEM analysis were prepared by chemical polishing. The microstructure, which is unchanged by the final 700°C anneal,is shown in Figure 1. It consists of numerous randomly oriented grains many of which contain twins.X-ray analysis was carried out in a VG HB5 STEM. As K α x-ray counts were collected from STEM scans across grain and twin boundaries, Figures 2-4. The incident beam size was about 1.5nm in diameter, and each of the 20 channels in the plots was sampled from a 1.6nm length of the approximately 30nm line scan across the boundary. The bright field image profile along the scanned line was monitored during the analysis to allow correlation between the image and the x-ray signal.


Author(s):  
Jaap Brink ◽  
Wah Chiu

Crotoxin complex is the principal neurotoxin of the South American rattlesnake, Crotalus durissus terrificus and has a molecular weight of 24 kDa. The protein is a heterodimer with subunit A assigneda chaperone function. Subunit B carries the lethal activity, which is exerted on both sides ofthe neuro-muscular junction, and which is thought to involve binding to the acetylcholine receptor. Insight in crotoxin complex’ mode of action can be gained from a 3 Å resolution structure obtained by electron crystallography. This abstract communicates our progress in merging the electron diffraction amplitudes into a 3-dimensional (3D) intensity data set close to completion. Since the thickness of crotoxin complex crystals varies from one crystal to the other, we chose to collect tilt series of electron diffraction patterns after determining their thickness. Furthermore, by making use of the symmetry present in these tilt data, intensities collected only from similar crystals will be merged.Suitable crystals of glucose-embedded crotoxin complex were searched for in the defocussed diffraction mode with the goniometer tilted to 55° of higher in a JEOL4000 electron cryo-microscopc operated at 400 kV with the crystals kept at -120°C in a Gatan 626 cryo-holder. The crystal thickness was measured using the local contrast of the crystal relative to the supporting film from search-mode images acquired using a 1024 x 1024 slow-scan CCD camera (model 679, Gatan Inc.).


2020 ◽  
Vol 2020 (14) ◽  
pp. 357-1-357-6
Author(s):  
Luisa F. Polanía ◽  
Raja Bala ◽  
Ankur Purwar ◽  
Paul Matts ◽  
Martin Maltz

Human skin is made up of two primary chromophores: melanin, the pigment in the epidermis giving skin its color; and hemoglobin, the pigment in the red blood cells of the vascular network within the dermis. The relative concentrations of these chromophores provide a vital indicator for skin health and appearance. We present a technique to automatically estimate chromophore maps from RGB images of human faces captured with mobile devices such as smartphones. The ultimate goal is to provide a diagnostic aid for individuals to monitor and improve the quality of their facial skin. A previous method approaches the problem as one of blind source separation, and applies Independent Component Analysis (ICA) in camera RGB space to estimate the chromophores. We extend this technique in two important ways. First we observe that models for light transport in skin call for source separation to be performed in log spectral reflectance coordinates rather than in RGB. Thus we transform camera RGB to a spectral reflectance space prior to applying ICA. This process involves the use of a linear camera model and Principal Component Analysis to represent skin spectral reflectance as a lowdimensional manifold. The camera model requires knowledge of the incident illuminant, which we obtain via a novel technique that uses the human lip as a calibration object. Second, we address an inherent limitation with ICA that the ordering of the separated signals is random and ambiguous. We incorporate a domain-specific prior model for human chromophore spectra as a constraint in solving ICA. Results on a dataset of mobile camera images show high quality and unambiguous recovery of chromophores.


2017 ◽  
Vol 61 (3) ◽  
pp. 305031-3050311 ◽  
Author(s):  
Timo Eckhard ◽  
Jia Eckhard ◽  
Eva M. Valero ◽  
Javier Hernández-Andrés
Keyword(s):  
B Spline ◽  

2015 ◽  
Vol 57 (11-12) ◽  
pp. 985-991
Author(s):  
Andreas Kupsch ◽  
Axel Lange ◽  
Manfred P. Hentschel ◽  
Gerd-Rüdiger Jaenisch ◽  
Nikolay Kardjilov ◽  
...  
Keyword(s):  
X Ray ◽  

2021 ◽  
pp. 1-1
Author(s):  
Benedikt Lorch ◽  
Franziska Schirrmacher ◽  
Anatol Maier ◽  
Christian Riess

Sign in / Sign up

Export Citation Format

Share Document