Simplified Monthly Hydrology and Irrigation Water Use Model to Explore Sustainable Water Management Options in the Murray-Darling Basin

2013 ◽  
Vol 27 (11) ◽  
pp. 4083-4097 ◽  
Author(s):  
J. M. Kirby ◽  
Md. Mainuddin ◽  
M. D. Ahmad ◽  
L. Gao
2018 ◽  
Author(s):  
Felix Zaussinger ◽  
Wouter Dorigo ◽  
Alexander Gruber ◽  
Angelica Tarpanelli ◽  
Paolo Filippucci ◽  
...  

Abstract. Effective agricultural water management requires accurate and timely information on the availability and use of irrigation water. However, most existing information on irrigation water use (IWU) lacks the objectivity and spatio-temporal representativeness needed for operational water management and meaningful characterisation of land-climate interactions. Although optical remote sensing has been used to map the area affected by irrigation, it does not physically allow for the estimation of the actual amount of irrigation water applied. On the other hand, microwave observations of the moisture content in the top soil layer are directly influenced by agricultural irrigation practices, and thus potentially allow for the quantitative estimation of IWU. In this study, we combine surface soil moisture retrievals from the spaceborne SMAP, AMSR2, and ASCAT microwave sensors with modelled soil moisture from MERRA-2 reanalysis to derive monthly IWU dynamics over the contiguous United States (CONUS) for the period 2013–2016. The methodology is driven by the assumption that the hydrology formulation of the MERRA-2 model does not account for irrigation, while the remotely sensed soil moisture retrievals do contain an irrigation signal. For many CONUS irrigation hot spots, the estimated spatial irrigation patterns show good agreement with a reference data set on irrigated areas. Moreover, in intensively irrigated areas, the temporal dynamics of observed IWU is meaningful with respect to ancillary data on local irrigation practices. State-aggregated mean IWU volumes derived from the combination of SMAP and MERRA-2 soil moisture show a good correlation with statistically reported state-level irrigation water withdrawals but systematically underestimate them. We argue that this discrepancy can be mainly attributed to the coarse spatial resolution of the employed satellite soil moisture retrievals, which fails to resolve local irrigation practices. Consequently, higher resolution soil moisture data are needed to further enhance the accuracy of IWU mapping.


2019 ◽  
Vol 23 (2) ◽  
pp. 897-923 ◽  
Author(s):  
Felix Zaussinger ◽  
Wouter Dorigo ◽  
Alexander Gruber ◽  
Angelica Tarpanelli ◽  
Paolo Filippucci ◽  
...  

Abstract. Effective agricultural water management requires accurate and timely information on the availability and use of irrigation water. However, most existing information on irrigation water use (IWU) lacks the objectivity and spatiotemporal representativeness needed for operational water management and meaningful characterization of land–climate interactions. Although optical remote sensing has been used to map the area affected by irrigation, it does not physically allow for the estimation of the actual amount of irrigation water applied. On the other hand, microwave observations of the moisture content in the top soil layer are directly influenced by agricultural irrigation practices and thus potentially allow for the quantitative estimation of IWU. In this study, we combine surface soil moisture (SM) retrievals from the spaceborne SMAP, AMSR2 and ASCAT microwave sensors with modeled soil moisture from MERRA-2 reanalysis to derive monthly IWU dynamics over the contiguous United States (CONUS) for the period 2013–2016. The methodology is driven by the assumption that the hydrology formulation of the MERRA-2 model does not account for irrigation, while the remotely sensed soil moisture retrievals do contain an irrigation signal. For many CONUS irrigation hot spots, the estimated spatial irrigation patterns show good agreement with a reference data set on irrigated areas. Moreover, in intensively irrigated areas, the temporal dynamics of observed IWU is meaningful with respect to ancillary data on local irrigation practices. State-aggregated mean IWU volumes derived from the combination of SMAP and MERRA-2 soil moisture show a good correlation with statistically reported state-level irrigation water withdrawals (IWW) but systematically underestimate them. We argue that this discrepancy can be mainly attributed to the coarse spatial resolution of the employed satellite soil moisture retrievals, which fails to resolve local irrigation practices. Consequently, higher-resolution soil moisture data are needed to further enhance the accuracy of IWU mapping.


2019 ◽  
Vol 4 (1) ◽  
pp. 35
Author(s):  
I Wayan Tika ◽  
I. A. Bintang Madrini ◽  
Sumiyati .

Salah satu program penting dalam intensifikasi budidaya padi adalah pengelolaan air irigasi yang efisien. Pada subak di Bali pelaksanaan jadual tanam biasanya dilakukan secara serenpak sehingga terjadi puncak kebutuhan air yang tinggi. Akibatnya sangat berisiko terhadap kekurangan atau kelebihan air irigasai pada subak tersebut. Kondisi demikian menyebabkan efisiensi penggunaan air irigasi pada subak menjadi rendah. Salah satu solusi untuk meingkatkan efisiensi penggunaan air irigasi tersebut adalah dengan melakukan jadual tanam tidak serenpak yang pada subak dikenal dengan istilah nyorog. Dengan demikian perlu dikaji besarnya peningkatan efisiensi penggunaan air irigasi jika jadual tanam dilakukan secara nyorog Berdasarkan data yang telah dikompilasi diperoleh efisiensi penggunaan air irigasi yang dilakukan saat ini sebesar 76,52%. Saat ini pada obyek penelitian jadual tanam dibagi menjadi dua kelompok dengan beda jadual tanam antar kelompok tersebut sekitar satu bulan, dengan awal jadual tanam mulai Pebruari I.  Jika dilakukan jadual tanam secara serempak pada Pebruari II diperoleh efisiensi penggunaan air irigasi sebesar 69,05%.  Jika jadual tanam dilakukan secara nyorog dengan membagi subak menjadi empat kelompok dan setiap kelompok perbedaan jadual tanam sekitar setengah bulan serta awal jadual tanam pada Bulan Pebruari I maka diperoleh efisiensi penggunaan air irigasinya 86,52%.  Dengan demikian jadual tanam secara nyorog dapat meningkatkan efisiensi penggunaan air irigasi dari 69,05% menjadi 86,52%.    One important program in the intensification of rice cultivation is efficient irrigation water management. In subak in Bali the planting schedule is usually carried out simultaneously so that there is a high peak of water demand. As a result, it is very risky for irrigation water shortages or excess in the subak. Such conditions cause the efficiency of the use of irrigation water in subak to be low. One solution to improve the efficiency of the use of irrigation water is by not planting simultaneously which are known as nyorog in subak. Thus, it is necessary to assess the magnitude of the increase in the efficiency of the use of irrigation water if the planting schedule is carried out in a systematic manner. Based on the data that has been compiled in Subak Guama  the efficiency of the use of irrigation water is 76.52%. At present the object of the planting schedule is divided into two groups with different planting schedules between groups of about one month, with the start of the planting schedule starting in February I. If the planting schedule is simultaneously held in February II, the efficiency of irrigation water use is 69.05%. If the planting schedule is carried out systematically by dividing subak into four groups and each group different planting schedules of about half a month and the beginning of the planting schedule in February I, it is obtained that the water use efficiency of irrigation is 86.52%. Thus the planting schedule nyorog can increase the efficiency of irrigation water use through 69.05% to 86.52%.


Water Policy ◽  
2011 ◽  
Vol 13 (1) ◽  
pp. 1-17 ◽  
Author(s):  
M. Ejaz Qureshi ◽  
R. Quentin Grafton ◽  
Mac Kirby ◽  
Munir A. Hanjra

This paper examines water use efficiency and economic efficiency with a particular focus on the Murray-Darling Basin of Australia and the stated policy goal of increasing environmental flows of water in the Basin. The different measures of efficiency are explained, and their implications for water reform and the efficacy of market based approaches to addressing the water scarcity issues and environmental flow needs are explored. Public policies to subsidize investments for improvements in irrigation efficiency are shown not to be currently cost effective compared to alternatives, such as buying water through water markets. The implications of these findings, and the factors that determine the demand for irrigation water by competing uses, can guide policy makers undertaking water reforms in the agricultural sector to mitigate the environmental consequences of overuse of water resources.


Sign in / Sign up

Export Citation Format

Share Document