Combine Evolutionary Optimization with Model Predictive Control in Real-time Flood Control of a River System

2015 ◽  
Vol 29 (8) ◽  
pp. 2527-2542 ◽  
Author(s):  
Po-Kuan Chiang ◽  
Patrick Willems
10.29007/fg7g ◽  
2018 ◽  
Author(s):  
Henrik Madsen ◽  
Anne Katrine Falk ◽  
Rasmus Halvgaard

We have developed a versatile Model Predictive Control (MPC) framework, which can handle real-time control of a large variety of water systems. The framework combines a fast-solvable optimisation model (a quadratic program) with evaluation and realignment by a detailed hydrological-hydrodynamic model. The flexibility of the MPC framework is highlighted by two case studies: (1) a large-scale river system with several weeks of travel time, and (2) an urban storm and wastewater system with a concentration time of about half an hour to one hour. Both case studies demonstrate a large potential for improving operations by system-wide real-time optimisation.


Water ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 340 ◽  
Author(s):  
Gökçen Uysal ◽  
Rodolfo Alvarado-Montero ◽  
Dirk Schwanenberg ◽  
Aynur Şensoy

Machines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 105
Author(s):  
Zhenzhong Chu ◽  
Da Wang ◽  
Fei Meng

An adaptive control algorithm based on the RBF neural network (RBFNN) and nonlinear model predictive control (NMPC) is discussed for underwater vehicle trajectory tracking control. Firstly, in the off-line phase, the improved adaptive Levenberg–Marquardt-error surface compensation (IALM-ESC) algorithm is used to establish the RBFNN prediction model. In the real-time control phase, using the characteristic that the system output will change with the external environment interference, the network parameters are adjusted by using the error between the system output and the network prediction output to adapt to the complex and uncertain working environment. This provides an accurate and real-time prediction model for model predictive control (MPC). For optimization, an improved adaptive gray wolf optimization (AGWO) algorithm is proposed to obtain the trajectory tracking control law. Finally, the tracking control performance of the proposed algorithm is verified by simulation. The simulation results show that the proposed RBF-NMPC can not only achieve the same level of real-time performance as the linear model predictive control (LMPC) but also has a superior anti-interference ability. Compared with LMPC, the tracking performance of RBF-NMPC is improved by at least 43% and 25% in the case of no interference and interference, respectively.


Sign in / Sign up

Export Citation Format

Share Document