Numerical Simulation of Dam Break Waves on Movable Beds for Various Forms of the Obstacle by VOF Method

2020 ◽  
Vol 34 (8) ◽  
pp. 2269-2289 ◽  
Author(s):  
Alibek Issakhov ◽  
Yeldos Zhandaulet
2009 ◽  
Vol 23 (03) ◽  
pp. 293-296 ◽  
Author(s):  
L. DING ◽  
C. SHU ◽  
N. ZHAO

This paper presents the application of an adaptive stencil diffuse interface method to the simulation of dam break problem. The adaptive stencil diffuse interface method is the combination of the diffuse interface method and a stencil adaptive algorithm, where the diffuse interface method is used as the solver, and the adaptive stencil refinement scheme is applied to improve the resolution around the interface so that the fine-scale interface behavior can be captured. In this paper, we use this method to simulate the dam break problem, study the dam height and leading edge position, and compare our results with the experiment data available in the literature. It is shown that the results using the adaptive stencil diffuse interface method agree very well with the experimental results.


2014 ◽  
Vol 548-549 ◽  
pp. 1257-1264 ◽  
Author(s):  
Xiao Yong Suo

Taking ejection process of the ink droplets from ink-jet nozzle as the prototype, a similar numerical model of droplet ejection was established. The VOF method was applied to track the interface of droplet ejection process and it is shown that the numerical results simulated by the VOF method were accurate and reliable. Six kinds of liquid with different physical properties were chosen as the research object. The numerical results were analyzed and compared. Finally, the effect of the surface tension, viscosity and density on the droplet ejection process was discussed.


2006 ◽  
Author(s):  
A Leopardi ◽  
M Iervolino ◽  
M Greco

2021 ◽  
Author(s):  
Can Huang ◽  
Xiaoliang Wang ◽  
Qingquan Liu

<p>Overtopping dam-break flow has great harm to the earthen embankments due to the hydraulic erosion. Some researchers have carried out relevant model experiments, but it is difficult to achieve the experimental conditions for the actual situation. The common numerical simulation is to express the scouring process through the empirical relationship, which obviously could not reflect the real scouring process. In this paper, a new overtopping erosion model using Smoothed Particle Hydrodynamics (SPH) is proposed. When the shear stress on the sediment SPH particle exceeds the critical stress, the erosion process begins. Then, when a sediment SPH particle is completely eroded, it will begin to move and is described as a non-Newtonian fluid. The un-incipient sediment particles are treated as boundary. This model is well validated with plane dike-breach experiment, and has also achieved a good agreement with erodible bed dam-break experiment.</p>


Author(s):  
Fan ◽  
An ◽  
Li ◽  
Li ◽  
Deng ◽  
...  

Dam-break flooding is a potential hazard for reservoirs that poses a considerable threat to human lives and property in downstream areas. Assessing the dam-break flood risk of the Zipingpu Reservoir in Chengdu, Sichuan Province, China, is critically important because this reservoir is located on the Longmen Shan fault, which experiences high seismic activity. In this paper, we develop an approach based on the protected object for dam-break flood risk management. First, we perform a numerical simulation of dam-break flooding in four possible dam break scenarios. Next, the flood areas are divided into 71 analysis units based on the administrative division. Based on the numerical simulation results and the socio-economic demographic data affected by a flood, the importance and risk level of each analysis unit is confirmed, and the flood risk map is established according to the classification results. Finally, multi-level flood risk management countermeasures are proposed according to the results of the unit classification shown in the map.


Sign in / Sign up

Export Citation Format

Share Document