Assessing Agriculture Conservation Practice Impacts on Groundwater Levels at Watershed Scale

2020 ◽  
Vol 34 (4) ◽  
pp. 1553-1566
Author(s):  
Xiaojing Ni ◽  
Prem B. Parajuli ◽  
Ying Ouyang
2016 ◽  
Author(s):  
◽  
Sitarrine Thongpussawal

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Terracing is a conservation practice to reduce erosion and intercept runoff from steep lands. Terraces control erosion and runoff by dividing long slopes into shorter slopes; thus, decreasing slope length, which reduces the magnitude and velocity of concentrated flow and allows for sediment to deposit in the cut segment of the terraces. The Soil and Water Assessment Tool (SWAT) is a continuous time, semi-distributed, watershed scale hydrologic model widely used to evaluate runoff and erosion. To account for terrace effects on runoff and erosion, SWAT has relied on reducing the slope length, adjusting the empirical Universal Soil Erosion Equation (USLE) support practice factor (P-factor), and adjusting the hydrologic runoff Curve Number (CN). This tool has limitations, and the runoff and erosion may not be well estimated because of changes in land shape after terrace installation. A modification of the SWAT (called SWAT-Terrace or SWAT-T) explicitly simulates runoff and erosion from terraces by separating terraces into three segments instead of evaluating the entire terrace. SWAT-T aims to improve the simulation of the hydrologic process of runoff and erosion from terraces. The objectives of this work are to 1) evaluate the performance of SWAT-T for simulating the terrace benefits on runoff and erosion from the Goodwater Creek Experimental Watershed (GCEW) at the Hydrologic Response Unit (HRU) and watershed scales, and 2) compare terrace benefits on runoff and erosion estimated with SWAT and with SWAT-T in GCEW. The SWAT model was parameterized for the slope length, USLE P-factor, and the CN. The SWAT-T model was parameterized for slope length, steepness, and USLE P-factor for three terrace segments. Data from 1993-2010 measured at the watershed outlet were used to evaluate the models. To estimate terrace benefits on runoff and erosion, models were compared with and without terraces. Results of SWAT-T showed good performance for the monthly runoff, but poor performance for the monthly erosion. This is probably because of large storms in spring 2002 that prevented planting, causing poorly simulated scheduling of actual field operations. SWAT-T showed [about]2 percent reduction in runoff and [about]13 percent reduction in erosion at the HRU scale and showed 0.1 percent reduction of runoff and [about]3 percent reduction in erosion at the watershed scale. For comparison of terrace benefits on runoff and erosion estimated with SWAT and with SWAT-T, SWAT-T showed more benefit in runoff and erosion at the HRU scale compared to SWAT. Results of SWAT-T showed a 13 percent reduction in runoff and a 95 percent reduction in erosion with terrace installation. Conversely, SWAT showed only a 0.03 percent reduction in runoff and an 89 percent reduction in erosion. Studies using the SWAT-T model indicated that the model may be used for quantifying the terrace benefits on runoff and erosion from terraced-cropped HRUs and watershed scales. Terrace algorithm incorporated in SWAT (SWAT-T) allowed model estimated runoff and erosion trapping in the cut terraced segment leading to better estimation of runoff and erosion.


2021 ◽  
pp. 117375
Author(s):  
Jeffrey B. Kast ◽  
Margaret Kalcic ◽  
Robyn Wilson ◽  
Douglas Jackson-Smith ◽  
Nicholas Breyfogle ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Philip Brick ◽  
Kent Woodruff

This case explores the Methow Beaver Project (MBP), an ambitious experiment to restore beaver (Castor canadensis) to a high mountain watershed in Washington State, USA. The Pacific Northwest is already experiencing weather regimes consistent with longer term climate projections, which predict longer and drier summers and stronger and wetter winter storms. Ironically, this combination makes imperative more water storage in one of the most heavily dammed regions in the nation. Although the positive role that beaver can play in watershed enhancement has been well known for decades, no project has previously attempted to re-introduce beaver on a watershed scale with a rigorous monitoring protocol designed to document improved water storage and temperature conditions needed for human uses and aquatic species. While the MBP has demonstrated that beaver can be re-introduced on a watershed scale, it has been much more difficult to scientifically demonstrate positive changes in water retention and stream temperature, given hydrologic complexity, unprecedented fire and floods, and the fact that beaver are highly mobile. This case study can help environmental studies students and natural resource policy professionals think about the broader challenges of diffuse, ecosystem services approaches to climate adaptation. Beaver-produced watershed improvements will remain difficult to quantify and verify, and thus will likely remain less attractive to water planners than conventional storage dams. But as climate conditions put additional pressure on such infrastructure, it is worth considering how beaver might be employed to augment watershed storage capacity, even if this capacity is likely to remain at least in part inscrutable.


Author(s):  
Tanya Pehlivanova

Global warming has led to lower levels of the water basins. Groundwater levels also decrease. Sometimes they fall so much so that submersible pumps in the wells remain almost dry and even in short work cycles get damaged. Their repairs are very expensive and labour intensive. An algorithm for management and protection of submersible pump is proposed in the paper. It uses 5 level sensors. It allows full utilization of the wells capacity and protects the pump motors from premature wear due to frequent switching on and off.


2018 ◽  
Vol 7 (4) ◽  
pp. 191
Author(s):  
Sherwan Sh. Qurtas

Recharge estimation accurately is crucial to proper groundwater resource management, for the groundwater is dynamic and replenished natural resource. Usually recharge estimation depends on the; the water balance, water levels, and precipitation. This paper is studying the south-middle part of Erbil basin, with the majority of Quaternary sediments, the unconfined aquifer system is dominant, and the unsaturated zone is ranging from 15 to 50 meters, which groundwater levels response is moderate. The purpose of this study is quantification the natural recharge from precipitation. The water table fluctuation method is applied; using groundwater levels data of selected monitoring wells, neighboring meteorological station of the wells, and the specific yield of the aquifers. This method is widely used for its simplicity, scientific, realistic, and direct measurement. The accuracy depends on the how much the determination of specific yield is accurate, accuracy of the data, and the extrapolations of recession of groundwater levels curves of no rain periods. The normal annual precipitation there is 420 mm, the average recharge is 89 mm, and the average specific yield is around 0.03. The data of one water year of 2009 and 2010 has taken for some technical and accuracy reasons.


2009 ◽  
Author(s):  
Dan Isaak ◽  
Bruce Rieman ◽  
Dona Horan

Sign in / Sign up

Export Citation Format

Share Document