agricultural conservation
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 38)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Olawale Israel Omomowo ◽  
Olubukola Oluranti Babalola

Providing safe and secure food for an increasing number of people globally is challenging. Coping with such a human population by merely applying the conventional agricultural production system has not proved to be agro-ecologically friendly; nor is it sustainable. Cowpea (Vigna unguiculata (L) Walp) is a multi-purpose legume. It consists of high-quality protein for human consumption, and it is rich in protein for livestock fodder. It enriches the soil in that it recycles nutrients through the fixation of nitrogen in association with nodulating bacteria. However, the productivity of this multi-functional, indigenous legume that is of great value to African smallholder farmers and the rural populace, and also to urban consumers and entrepreneurs, is limited. Because cowpea is of strategic importance in Africa, there is a need to improve on its productivity. Such endeavors in Africa are wrought with challenges that include drought, salinity, the excessive demand among farmers for synthetic chemicals, the repercussions of climate change, declining soil nutrients, microbial infestations, pest issues, and so forth. Nevertheless, giant strides have already been made and there have already been improvements in adopting sustainable and smart biotechnological approaches that are favorably influencing the production costs of cowpea and its availability. As such, the prospects for a leap in cowpea productivity in Africa and in the enhancement of its genetic gain are good. Potential and viable means for overcoming some of the above-mentioned production constraints would be to focus on the key cowpea producer nations in Africa and to encourage them to embrace biotechnological techniques in an integrated approach to enhance for sustainable productivity. This review highlights the spectrum of constraints that limit the cowpea yield, but looks ahead of the constraints and seeks a way forward to improve cowpea productivity in Africa. More importantly, this review investigates applications and insights concerning mechanisms of action for implementing eco-friendly biotechnological techniques, such as the deployment of bio inoculants, applying climate-smart agricultural (CSA) practices, agricultural conservation techniques, and multi-omics smart technology in the spheres of genomics, transcriptomics, proteomics, and metabolomics, for improving cowpea yields and productivity to achieve sustainable agro-ecosystems, and ensuring their stability.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2102
Author(s):  
Francesca Magnolo ◽  
Harmen Dekker ◽  
Mieke Decorte ◽  
Guido Bezzi ◽  
Lorella Rossi ◽  
...  

Sequential cropping in the Biogasdoneright™ (BDR™) system in Italy has recently gained attention to combine food and renewable energy production in a sustainable way, as well as for carbon sequestration. However, little is known on the potential to expand the practice in other regions of Europe. In this paper, sequential crop calendars were developed for different EU climate regions, and the EU biomethane potential of the anaerobic digestion (AD) of sequential crops was estimated for a Conservative_Scenario and a Maximum_Scenario, assuming different percentages of primary crop land dedicated to the practice and biogas yields. A total EU biomethane potential of 46 bcm/yr and 185 bcm/yr was estimated from the AD of sequential crops in the two scenarios, respectively, and the Continental region registered the highest potential compared to the other regions. The additional benefits of the combination of sequential cropping with other agricultural conservation practices and digestate use included in BDR™ systems were also discussed. In conclusion, the paper shows that with appropriate innovations in crop management, sequential cropping could be applied in different agroclimatic regions of Europe, contributing to climate and renewable energy targets.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sheng Gong ◽  
Jason.S. Bergtold ◽  
Elizabeth Yeager

AbstractAgricultural conservation systems consist of a myriad of conservation practices. The mix and intensity of conservation practices adopted can benefit farmers and affect the entire production system in addition to soil and water conservation. The purpose of this study is to examine and analyze farmer adoption of and complementarity between conservation practices from a joint and conditional probabilistic perspective using Kansas as a case study. We develop a modeling framework that can analyze and examine farmers’ joint and conditional adoption decisions using a multinomial logistic regression model. This framework is used to estimate conditional probabilities of adopting conservation practices given adoption of other practices to better capture the complementarity between different conservation practices. These estimates allow for an assessment of linkages between adoption of different conservation practices and the socioeconomic factors that affect the likelihood of adopting conservation practices given other conservation practices have already been adopted on-farm. The results can help guide policy and outreach efforts to promote further intensification of adoption by farmers.


2021 ◽  
Vol 2021 ◽  
pp. 1-5
Author(s):  
Liangzhen Zhu ◽  
Xigang Xing ◽  
Feng Yan

Through a simple and intuitive example of the agricultural water conservation assessment in 3 provinces, China, the abnormal phenomena of the entropy weighting method (EWM) in the dynamic evaluation are revealed. The results show the following. (i) The irrigation water efficiency percentages (IWEPs) of these 3 provinces are improved from 53%, 53%, and 55% to 55%, 56%, and 56%, respectively. And their water-saving irrigation projects percentages (WSIPPs) are improved from 40%, 41%, and 41% to 42%, 42%, and 42%, respectively. However, their comprehensive agricultural conservation indices deteriorate from 52.11, 52.45, and 56.1 to 46.07, 46.74, and 48.57, respectively. (ii) EWM leads to the following paradox in the dynamic evaluation. All the indicators show improving trends, but the comprehensive evaluation results show a deteriorating trend. (iii) These abnormal phenomena of EWM are induced by that though all the indicators are improved, the discrimination of the worse indicators becomes larger while the discrimination of the better indicators becomes smaller. (iv) The abnormal phenomena of EWM in dynamic evaluation can be avoided by the trend analysis of the observation data and entropy values. When all the indicators have improvement trends, but the entropies of the better indicators are increasing and the entropies of the worse indicators are decreasing, EWM should not be used for assigning weights.


Sign in / Sign up

Export Citation Format

Share Document