Biological Nitrogen Removal in Moving Bed Biofilm Reactor Using Ibuprofen as Carbon Source

2016 ◽  
Vol 227 (2) ◽  
Author(s):  
Edris Hoseinzadeh ◽  
Abbas Rezaee ◽  
Hooshyar Hossini
1994 ◽  
Vol 29 (12) ◽  
pp. 185-195 ◽  
Author(s):  
Bjørn Rusten ◽  
Jon G. Siljudalen ◽  
Bjørnar Nordeidet

A new moving bed biofilm reactor (MBBR) has been developed in Norway. The biomass is attached to carrier elements that move freely along with the water in the reactor. It has been demonstrated that existing, high loaded, activated sludge plants can easily be upgraded to nitrogen removing MBBR plants. With chemically enhanced mechanical treatment, full scale tests showed that 80-90% total nitrogen could be removed in a MBBR plant at a total empty bed hydraulic retention time (HRT) of 2.6 hours. The plant was operated in the post-denitrification mode, using methanol as an external carbon source.


2017 ◽  
Vol 245 ◽  
pp. 1282-1285 ◽  
Author(s):  
Xinbo Zhang ◽  
Zi Song ◽  
Wenshan Guo ◽  
Yanmin Lu ◽  
Li Qi ◽  
...  

2011 ◽  
Vol 28 (2) ◽  
pp. 197-207 ◽  
Author(s):  
L. M. Queiroz ◽  
M. V. Aun ◽  
D. M. Morita ◽  
P. Alem Sobrinho

2012 ◽  
Vol 23 (5) ◽  
pp. 739-749 ◽  
Author(s):  
Ivar Zekker ◽  
Kristel Kroon ◽  
Ergo Rikmann ◽  
Toomas Tenno ◽  
Martin Tomingas ◽  
...  

2009 ◽  
Vol 2009 (15) ◽  
pp. 2266-2279
Author(s):  
Arbina Shrestha ◽  
Rumana Riffat ◽  
Charles Bott ◽  
Imre Takacs ◽  
Beverley Stinson ◽  
...  

2016 ◽  
Vol 74 (12) ◽  
pp. 2909-2916 ◽  
Author(s):  
Lukasz Kopec ◽  
Jakub Drewnowski ◽  
Adam Kopec

The paper presents research of a prototype moving bed biofilm reactor (MBBR). The device was used for the post-denitrification process and was installed at the end of a technological system consisting of a septic tank and two trickling filters. The concentrations of suspended biomass and biomass attached on the EvU Perl moving bed surface were determined. The impact of the external organic carbon concentration on the denitrification rate and efficiency of total nitrogen removal was also examined. The study showed that the greater part of the biomass was in the suspended form and only 6% of the total biomass was attached to the surface of the moving bed. Abrasion forces between carriers of the moving bed caused the fast stripping of attached microorganisms and formation of flocs. Thanks to immobilization of a small amount of biomass, the MBBR was less prone to leaching of the biomass and the occurrence of scum and swelling sludge. It was revealed that the maximum rate of denitrification was an average of 0.73 gN-NO3/gDM·d (DM: dry matter), and was achieved when the reactor was maintained in external organic carbon concentration exceeding 300 mgO2/dm3 chemical oxygen demand. The reactor proved to be an effective device enabling the increase of total nitrogen removal from 53.5% to 86.0%.


2014 ◽  
Vol 962-965 ◽  
pp. 1490-1494
Author(s):  
Jian Zheng Li ◽  
Shuai Shi

Low nitrogen removal efficiency caused by the lack of carbon source in low C/N ratio wastewater restricts the wastewater biological treatment. Advances in wastewater biological treatment at low C/N ratio are reviewed in the paper from three aspects, including modifying traditional biological nitrogen removal process, developing novel biological nitrogen removal processes and optimizing traditional carbon source and developing new types of carbon sources. The mechanisms, advantages, and applications of these processes are also summarized and analyzed.


Sign in / Sign up

Export Citation Format

Share Document