Upgrading to nitrogen removal with the kmt moving bed biofilm process

1994 ◽  
Vol 29 (12) ◽  
pp. 185-195 ◽  
Author(s):  
Bjørn Rusten ◽  
Jon G. Siljudalen ◽  
Bjørnar Nordeidet

A new moving bed biofilm reactor (MBBR) has been developed in Norway. The biomass is attached to carrier elements that move freely along with the water in the reactor. It has been demonstrated that existing, high loaded, activated sludge plants can easily be upgraded to nitrogen removing MBBR plants. With chemically enhanced mechanical treatment, full scale tests showed that 80-90% total nitrogen could be removed in a MBBR plant at a total empty bed hydraulic retention time (HRT) of 2.6 hours. The plant was operated in the post-denitrification mode, using methanol as an external carbon source.

2017 ◽  
Vol 77 (3) ◽  
pp. 714-720 ◽  
Author(s):  
J. C. Leyva-Díaz ◽  
A. Rodríguez-Sánchez ◽  
J. González-López ◽  
J. M. Poyatos

Abstract A membrane bioreactor (MBR) and a hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) for municipal wastewater treatment were studied to determine the effect of salinity on nitrogen removal and autotrophic kinetics. The biological systems were analyzed during the start-up phase with a hydraulic retention time (HRT) of 6 h, total biomass concentration of 2,500 mg L−1 in the steady state, and electric conductivities of 1.05 mS cm−1 for MBR and hybrid MBBR-MBR working under regular salinity and conductivity variations of 1.2–6.5 mS cm−1 for MBR and hybrid MBBR-MBR operating at variable salinity. The variable salinity affected the autotrophic biomass, which caused a reduction of the nitrogen degradation rate, an increase of time to remove ammonium from municipal wastewater and longer duration of the start-up phase for the MBR and hybrid MBBR-MBR.


Water ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 81
Author(s):  
Jamal Ali Kawan ◽  
Fatihah Suja’ ◽  
Sagor Kumar Pramanik ◽  
Arij Yusof ◽  
Rakmi Abdul Rahman ◽  
...  

Treated effluent from a wastewater treatment plant can be further reused as a water resource for a water supply treatment plant. In this case, the treated sewage gathered in the study of the Class V National Water Quality Standard (NWQS) of Malaysia would be treated for use as a water resource for a water treatment plant. In a moving bed biofilm reactor (MBBR) with a 500-L working volume, organic pollutants, undesirable nutrients, and bacteria were removed without disinfectant. At 24-h hydraulic retention time (HRT), the maximum removal efficiency of 5-day biological oxygen demand, ammonia–nitrogen (NH3-N), and total phosphorus were 71%, 48%, and 12%, respectively. The biofilm thickness, which was captured using scanning electron microscopy, increased from 102.6 μm (24-h HRT) to 297.1 μm (2-h HRT). A metagenomic analysis using 16S rRNA showed an abundance of anaerobic bacteria, especially from the Proteobacteria phylum, which made up almost 53% of the total microbes. MBBR operated at 24-h HRT could improve effluent quality, as its characteristics fell into Class IIA of the NWQS of Malaysia, with the exception of the NH3-N content, which indicated that the effluent needed conventional treatment prior to being reused as potable water.


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Nusa Idaman Said ◽  
Muhammad Rizki Syabani

The treatment process of wastewater contains organic pollutant which used in Indonesia especially in Jakarta is generaly activated sludge process. The problem is its treated water quality which frequently does not yet fulfilled to effluent standard of wastewater. Some affecting factors  are hydraulic retention time (HRT) too short, the fluctuation of wastewater flow rate, unfavorable function of aeration process and also which do not less important is operational mistake caused by insufficient knowledge of operator. To overcome the mentioned problems it is needed technological innovation to increase efficiency of wastewater treatment process especially activated sludge process. Moving Bed Biofilm Reactor (MBBR) technology is one of the  effective alternative for treating wastewater containing organic pollutants. In principle, MBBR is a modification of the activated sludge process is enhanced by adding the media into the aeration tank.This paper describes the study of domestic waste water treatment  using MBBR process which is filled with bioball plastic media which has specific surface 210 m2/m3 as much as 20 % of the volume of the aeration tank for attaching microorganism to increase efficiency and  keep stability of process.Result of the study shows that within 12 hours, 8 hours, 6 hours and 4 hours of hydraulic retention time (HRT) in aeration tank and sludge circulation ratio 0f R = 1.0 Q, the removal efficiency of ammonia were 94.05 %, 93.42 %, 89 %, and 79.6 % respectively. In ammonia loading 0.106 – 0.302 kg/m3.day, the removal efficiency of ammonia were 95.54 – 83.01 %. The greater ammonia loading,  removal efficiency of  ammonia  is getting smaller. Optimal residence time is 6 hours with ammonia removal efficiency reached 89 %, and the average concentration of ammonia in the effluent of 8.3 mg per litre.  Keyword : Domestic wastewater, ammonia, bioball, MBBR.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 161-168 ◽  
Author(s):  
H. Helness ◽  
H. Ødegaard

Experiments have been carried out with biological phosphorus removal in a sequencing batch moving bed biofilm reactor (SBMBBR) with a plastic biofilm carrier (Kaldnes) suspended in the wastewater. The aim of the research leading to this paper was to evaluate biological phosphorus removal in this type of biofilm process. Biological phosphorus removal can be achieved in a moving bed biofilm reactor operated as a sequencing batch reactor. In order to achieve good and stable phosphorus removal over time, the length of the anaerobic period should be tuned to achieve near complete removal of easily biodegradable COD in the anaerobic period. The total COD-loading rate must at the same time be kept high enough to achieve a net growth of biomass in the reactor. Use of multivariate models based on UV-absorption spectra and measurements of the redox potential show potential for control of such a process.


Sign in / Sign up

Export Citation Format

Share Document