Comparative Study of the Degradation of the Diclofenac Drug Using Photo-Peroxidation and Heterogeneous Photocatalysis with UV-C and Solar Radiation

2020 ◽  
Vol 231 (4) ◽  
Author(s):  
Dennis Díaz-Rodríguez ◽  
María Elena Palacios-Antón ◽  
Rayany Magali Da Rocha Santana ◽  
Luis Santiago Quiroz-Fernández ◽  
Yunet Gómez-Salcedo ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Boluwaji M. Olomiyesan ◽  
Onyedi D. Oyedum

In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005) of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET) Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA) for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE), and coefficient of determination (R2). Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano) and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.


2016 ◽  
Vol 135 ◽  
pp. 169-176 ◽  
Author(s):  
Pier Luigi Gentili ◽  
Amanda L. Rightler ◽  
B. Mark Heron ◽  
Christopher D. Gabbutt

2021 ◽  
Vol 9 (1) ◽  
pp. 2308-2314
Author(s):  
Archana Singh ◽  
Chidanand DV ◽  
Aabhishek AS ◽  
Bhagwat Madhura

2015 ◽  
Vol 78 (6) ◽  
pp. 1147-1153 ◽  
Author(s):  
KAYLA MURRAY ◽  
FAN WU ◽  
RAFIA AKTAR ◽  
AZADEH NAMVAR ◽  
KEITH WARRINER

The following reports on a comparative study on the efficacy of different decontamination technologies to decrease Listeria monocytogenes inoculated onto white sliced mushrooms and assesses the fate of residual levels during posttreatment storage under aerobic conditions at 8°C. The treatments were chemical (hydrogen peroxide, peroxyacetic acid, ozonated water, electrolyzed water, chitosan, lactic acid), biological (Listeria bacteriophages), and physical (UV-C, UV–hydrogen peroxide). None of the treatments achieved >1.2 log CFU reduction in L. monocytogenes levels; bacteriophages at a multiplicity of infection of 100 and 3% (vol/vol) hydrogen peroxide were the most effective of the treatments tested. However, growth of residual L. monocytogenes during posttreatment storage attained levels equal to or greater than levels in the nontreated controls. The growth of L. monocytogenes was inhibited on mushrooms treated with chitosan, electrolyzed water, peroxyacetic acid, or UV. Yet, L. monocytogenes inoculated onto mushrooms and treated with UV–hydrogen peroxide decreased during posttreatment storage, through a combination of sublethal injury and dehydration of the mushroom surface. Although mushrooms treated with UV–hydrogen peroxide became darker during storage, the samples were visually acceptable relative to controls. In conclusion, of the treatments evaluated, UV–hydrogen peroxide holds promise to control L. monocytogenes on mushroom surfaces.


Sign in / Sign up

Export Citation Format

Share Document