Microbial activity across a boreal peatland nutrient gradient: the role of fungi and bacteria

2011 ◽  
Vol 20 (2) ◽  
pp. 77-88 ◽  
Author(s):  
Britney Myers ◽  
Kara L. Webster ◽  
Jim W. Mclaughlin ◽  
Nathan Basiliko
2019 ◽  
Author(s):  
Rohan Sachdeva ◽  
Barbara J. Campbell ◽  
John F. Heidelberg

AbstractMicrobes are the Earth’s most numerous organisms and are instrumental in driving major global biological and chemical processes. Microbial activity is a crucial component of all ecosystems, as microbes have the potential to control any major biochemical process. In recent years, considerable strides have been made in describing the community structure,i.e. diversity and abundance, of microbes from the Earth’s major biomes. In virtually all environments studied, a few highly abundant taxa dominate the structure of microbial communities. Still, microbial diversity is high and is concentrated in the less abundant, or rare, fractions of the community,i.e. the “long tail” of the abundance distribution. The relationship between microbial community structure and activity, specifically the role of rare microbes, and its connection to ecosystem function, is not fully understood. We analyzed 12.3 million metagenomic and metatranscriptomic sequence assemblies and their genes from environmental, human, and engineered microbiomes, and show that microbial activity is dominated by rare microbes (96% of total activity) across all measured biomes. Further, rare microbial activity was comprised of traits that are fundamental to ecosystem and organismal health,e.g. biogeochemical cycling and infectious disease. The activity of rare microbes was also tightly coupled to temperature, revealing a link between basic biological processes,e.g. reaction rates, and community activity. Our study provides a broadly applicable and predictable paradigm that implicates rare microbes as the main microbial drivers of ecosystem function and organismal health.


2018 ◽  
Vol 9 ◽  
Author(s):  
Federico Baltar ◽  
Andrés Gutiérrez-Rodríguez ◽  
Moana Meyer ◽  
Isadora Skudelny ◽  
Sylvia Sander ◽  
...  

2013 ◽  
Vol 10 (9) ◽  
pp. 6115-6130 ◽  
Author(s):  
M. Pacton ◽  
S. F. M. Breitenbach ◽  
F. A. Lechleitner ◽  
A. Vaks ◽  
C. Rollion-Bard ◽  
...  

Abstract. Calcitic speleothems in caves can form through abiogenic or biogenic processes, or through a combination of both. Many issues conspire to make the assessment of biogenicity difficult, especially when focusing on old speleothem deposits. This study reports on a multiproxy analysis of a Siberian stalactite, combining high-resolution microscopy, isotope geochemistry and microbially enhanced mineral precipitation laboratory experiments. The contact between growth layers in a stalactite exhibits a biogenic isotopic signature; coupled with morphological evidence, this supports a microbial origin of calcite crystals. SIMS δ13C data suggest that microbially mediated speleothem formation occurred repeatedly at short intervals before abiotic precipitation took over. The studied stalactite also contains iron and manganese oxides that have been mediated by microbial activity through extracellular polymeric substance (EPS)-influenced organomineralization processes. The latter reflect paleoenvironmental changes that occurred more than 500 000 yr ago, possibly related to the presence of a peat bog above the cave at that time. Microbial activity can initiate calcite deposition in the aphotic zone of caves before inorganic precipitation of speleothem carbonates. This study highlights the importance of microbially induced fractionation that can result in large negative δ13C excursions. The microscale biogeochemical processes imply that microbial activity has only negligible effects on the bulk δ13C signature in speleothems, which is more strongly affected by CO2 degassing and the host rock signature.


Chemosphere ◽  
2004 ◽  
Vol 56 (6) ◽  
pp. 519-530 ◽  
Author(s):  
Marion Nipper ◽  
Yaorong Qian ◽  
R Scott Carr ◽  
Karen Miller

Sign in / Sign up

Export Citation Format

Share Document