s cycling
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Liyan Song ◽  
Yangqing Wang ◽  
Rui Zhang ◽  
Shu Yang

Abstract Landfills is a unique “terrestrial ecosystem” and serves as a significant carbon sink. Microorganism convert biodegradable substances in municipal solid waste (MSW) to CH4, CO2 and microbial biomass, consisting of the carbon cycling in landfills. Meanwhile, microbial mediated N and S cycles affect carbon cycling. How microbial community structure and function respond to C, N, and S cycling during solid waste decomposition, however are not well characterized. Here we show the response of bacterial and archaeal community structure and functions to C, N, and S cycling during solid waste decomposition in a long-term (265 days) operation laboratory-scale bioreactor through 16S rRNA based pyrosequencing and metagenomics analysis. Bacterial and archaeal community composition varied during solid waste decomposition. Aerobic respiration was the main pathway for CO2 emission, while anaerobic C fixation was the main pathway in carbon fixation. Methanogenesis and denitrification increased during solid waste decomposition, suggesting increasing CH4 and N2O emission. In contract, fermentation decreased along solid waste decomposition. Interestingly, Clostridiales were abundant and showed potential for several pathways in C, N, and S cycling. Archaea were involved in many pathways of C and N cycles. There is a shift between bacteria and archaea involvement in N2 fixation along solid waste decomposition that bacteria Clostridiales and Bacteroidales were initial dominant and then Methanosarcinales increased and became dominant in methanogenic phase. These results provide extensive microbial mediation of C, N, and S cycling profiles during solid waste decomposition.


2021 ◽  
Author(s):  
Shekhar Nagar ◽  
Chandni Talwar ◽  
Mikael Motelica-Heino ◽  
Hans-Hermann Richnow ◽  
Mallikarjun Shakarad ◽  
...  

AbstractGraphical AbstractSulfur Related Prokaryotes (SRP) residing in hot spring present good opportunity for exploring the limitless possibilities of integral ecosystem processes. Metagenomic analysis further expand the phylogenetic breadth of these extraordinary sulfur metabolizing microorganisms, as well a their complex metabolic networks and syntrophic interactions in environmental biosystems. Through this study, we explored and expanded the microbial genetic repertoire with focus on sulfur cycling genes through metagenomic analysis of sulfur (S) contaminated hot spring, located at the Northern Himalayas. The analysis revealed rich diversity of microbial consortia with established roles in S cycling such as Pseudomonas, Thioalkalivibrio, Desulfovibrio and Desulfobulbaceae (Proteobacteria). The major gene families inferred to be abundant across microbial mat, sediment and water were assigned to Proteobacteria as reflected from the RPKs (reads per kilobase) categorized into translation and ribosomal structure and biogenesis. Analysis of sequence similarity showed conserved pattern of both dsrAB genes (n=178) retrieved from all metagenomes while other sulfur disproportionation proteins were diverged due to different structural and chemical substrates. The diversity of sulfur oxidizing bacteria (SOB) and sulfate reducing bacteria (SRB) with conserved (r)dsrAB suggests for it to be an important adaptation for microbial fitness at this site. Here, we confirm that (i) SRBs belongs to δ-Proteobacteria occurring independent LGT of dsr genes to different and few novel lineages (ii) also, the oxidative and reductive dsr evolutionary time scale phylogeny, proved that the earliest (not first) dsrAB proteins belong to anaerobic Thiobacillus with other (rdsr) oxidizers. Further, the structural prediction of unassigned DsrAB proteins confirmed their relatedness with species of Desulfovibrio (TM score= 0.86; 0.98; 0.96) and Archaeoglobus fulgidus (TM score= 0.97; 0.98). We proposed that the genetic repertoire might provide the basis of studying time scale evolution and horizontal gene transfer of these genes in biogeochemical S cycling and the complementary genes could be implemented in biotechnology and bioremediation applications.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1443
Author(s):  
Victoria L. Wyckelsma ◽  
Ada Trepci ◽  
Lilly Schwieler ◽  
Tomas Venckunas ◽  
Marius Brazaitis ◽  
...  

The kynurenine pathway (KP) is gaining attention in several clinical fields. Recent studies show that physical exercise offers a therapeutic way to improve ratios of neurotoxic to neuroprotective KP metabolites. Antioxidant supplementation can blunt beneficial responses to physical exercise. We here studied the effects of endurance training in the form of sprint interval training (SIT; three sessions of 4–6 × 30 s cycling sprints per week for three weeks) in elderly (~65 years) men exposed to either placebo (n = 9) or the antioxidants vitamin C (1 g/day) and E (235 mg/day) (n = 11). Blood samples and muscle biopsies were taken under resting conditions in association with the first (untrained state) and last (trained state) SIT sessions. In the placebo group, the blood plasma level of the neurotoxic quinolinic acid was lower (~30%) and the neuroprotective kynurenic acid to quinolinic acid ratio was higher (~50%) in the trained than in the untrained state. Moreover, muscle biopsies showed a training-induced increase in kynurenine aminotransferase (KAT) III in the placebo group. All these training effects were absent in the vitamin-treated group. In conclusion, KP metabolism was shifted towards neuroprotection after three weeks of SIT in elderly men and this shift was blocked by antioxidant treatment.


2021 ◽  
Vol 3 (4) ◽  
pp. 405-415
Author(s):  
Binhao Wang ◽  
Xiafei Zheng ◽  
Hangjun Zhang ◽  
Xiaoli Yu ◽  
Yingli Lian ◽  
...  

AbstractSubmerged plants in wetlands play important roles as ecosystem engineers to improve self-purification and promote elemental cycling. However, their effects on the functional capacity of microbial communities in wetland sediments remain poorly understood. Here, we provide detailed metagenomic insights into the biogeochemical potential of microbial communities in wetland sediments with and without submerged plants (i.e., Vallisneria natans). A large number of functional genes involved in carbon (C), nitrogen (N) and sulfur (S) cycling were detected in the wetland sediments. However, most functional genes showed higher abundance in sediments with submerged plants than in those without plants. Based on the comparison of annotated functional genes in the N and S cycling databases (i.e., NCycDB and SCycDB), we found that genes involved in nitrogen fixation (e.g., nifD/H/K/W), assimilatory nitrate reduction (e.g., nasA and nirA), denitrification (e.g., nirK/S and nosZ), assimilatory sulfate reduction (e.g., cysD/H/J/N/Q and sir), and sulfur oxidation (e.g., glpE, soeA, sqr and sseA) were significantly higher (corrected p < 0.05) in vegetated vs. unvegetated sediments. This could be mainly driven by environmental factors including total phosphorus, total nitrogen, and C:N ratio. The binning of metagenomes further revealed that some archaeal taxa could have the potential of methane metabolism including hydrogenotrophic, acetoclastic, and methylotrophic methanogenesis, which are crucial to the wetland methane budget and carbon cycling. This study opens a new avenue for linking submerged plants with microbial functions, and has further implications for understanding global carbon, nitrogen and sulfur cycling in wetland ecosystems.


Author(s):  
Fien Degryse ◽  
Roslyn Baird ◽  
Ivan Andelkovic ◽  
Michael J. McLaughlin

AbstractIn previous studies, we assessed sulfur (S) uptake by crops from elemental S (ES) and sulfate-S (SO4-S) in S-fortified monoammonium phosphate fertilizers over two years. The recovery by the crop ranged from 16 to 28% for ES and from 9 to 86% for SO4-S. Here, we used a model which takes into account organic S cycling, SO4-S leaching and ES oxidation to explain the observed recoveries. Higher recoveries of ES than SO4-S in two of the four sites could be explained by partial leaching of SO4-S and relatively fast oxidation of ES, due to a warm climate and high S-oxidizing soils. The same model was used for longer-term (5-year) predictions, and a sensitivity analysis was carried out. The size of the labile soil S pool and total S uptake strongly affected the recovery of both SO4-S and ES. Predicted recoveries after 5 years were over threefold higher for a small than for a large labile organic S pool and for a high-uptake than for a low-uptake scenario. Leaching mainly affected SO4-S, with predicted recoveries halved under a high-leaching scenario. Slow oxidation resulted in recoveries in the first year being fourfold lower for ES than for SO4-S or even lower in case of a long lag-time. However, it is predicted that total recoveries of ES will eventually reach those of SO4-S or exceed them if there is SO4-S leaching. Our model demonstrates that long-term trials are needed to evaluate the true effectiveness of a slow-release fertilizer source such as ES.


2021 ◽  
Vol 193 (4) ◽  
Author(s):  
R. Kelman Wieder ◽  
Melanie A. Vile ◽  
Kimberli D. Scott ◽  
Cara M. Albright ◽  
James C. Quinn ◽  
...  

AbstractIncreasing gaseous emissions of nitrogen (N) and sulfur (S) associated with oil sands development in northern Alberta (Canada) has led to changing regional wet and dry N and S deposition regimes. We assessed the potential for using bog plant/lichen tissue chemistry (N and S concentrations, C:N and C:S ratios, in 10 plant/lichen species) to monitor changing atmospheric N and S deposition through sampling at five bog sites, 3–6 times per growing season from 2009 to 2016. During this 8-year period, oil sands N emissions steadily increased, while S emissions steadily decreased. We examined the following: (1) whether each species showed changes in tissue chemistry with increasing distance from the Syncrude and Suncor upgrader stacks (the two largest point sources of N and S emissions); (2) whether tissue chemistry changed over the 8 year period in ways that were consistent with increasing N and decreasing S emissions from oil sands facilities; and (3) whether tissue chemistry was correlated with growing season wet deposition of NH4+-N, NO3−-N, or SO42−-S. Based on these criteria, the best biomonitors of a changing N deposition regime were Evernia mesomorpha, Sphagnum fuscum, and Vaccinium oxycoccos. The best biomonitors of a changing S deposition regime were Evernia mesomorpha, Cladonia mitis, Sphagnum fuscum, Sphagnum capillifolium, Vaccinium oxycoccos, and Picea mariana. Changing N and S deposition regimes in the oil sands region appear to be influencing N and S cycling in what once were pristine ombrotrophic bogs, to the extent that these bogs may effectively monitor future spatial and temporal patterns of deposition.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyung-Jin Lee ◽  
Kang-Woo Lee ◽  
Kurokawa Takeshi ◽  
Yong-Woo Lee ◽  
Hee-Jin Kim

AbstractThe primary purpose was to examine the relationship between the muscle architectural characteristics of short and long-distance cyclist—including muscle thickness, fascicle angle, and fascicle length—of the anterior thigh and posterior leg and its impact in 20-s cycling power. The secondary purpose was to clarify the muscle variables that predict the cycling power by using ultrasonography to measure the muscle architectural characteristics. Twenty-four varsity cyclists participated in this study, of whom 12 were short-distance cyclists and 12 were long-distance cyclists. B-mode ultrasonography was used to measure muscle architecture parameters. A cycle ergometer was used to measure the cycling power. The rectus femoris, vastus medialis, and medial head of gastrocnemius were significantly thicker in short-distance cyclists than in long-distance cyclists at every site (p < 0.05). Our analysis revealed that the rectus femoris fascicle length at the 30% level of the thigh was a significant independent predictor of the 20-s cycling power in short-distance cyclists, while the rectus femoris fascicle angle at the 50% level was that of the 20-s cycling power in long-distance cyclists. These findings highlight the significance of rectus femoris muscle architecture to cycling power.


Author(s):  
Brett A. Gordon ◽  
Caroline J. Taylor ◽  
Jarrod E. Church ◽  
Stephen D. Cousins

High-intensity interval exercise and resistance exercise both effectively lower blood glucose; however, it is not clear whether different regulatory mechanisms exist. This randomised cross-over study compared the acute gluco-regulatory and the physiological responses of high-intensity interval exercise and resistance exercise. Sixteen (eight males and eight females) recreationally active individuals, aged (mean ± SD) 22 ± 7 years, participated with a seven-day period between interventions. The high-intensity interval exercise trial consisted of twelve, 30 s cycling intervals at 80% of peak power capacity and 90 s active recovery. The resistance exercise trial consisted of four sets of 10 repetitions for three lower-limb exercises at 80% 1-RM, matched for duration of high-intensity interval exercise. Exercise was performed after an overnight fast, with blood samples collected every 30 min, for two hours after exercise. There was a significant interaction between time and intervention for glucose (p = 0.02), which was, on average (mean ± SD), 0.7 ± 0.7 mmol∙L−1 higher following high-intensity interval exercise, as compared to resistance exercise. Cortisol concentration over time was affected by intervention (p = 0.03), with cortisol 70 ± 103 ng∙mL−1 higher (p = 0.015), on average, following high-intensity interval exercise. Resistance exercise did not induce the acute rise in glucose that was induced by high-intensity interval exercise and appears to be an appropriate alternative to positively regulate blood glucose.


2020 ◽  
Author(s):  
Dapeng Li ◽  
Xianyue Li ◽  
Qiuying Song ◽  
Qiquan Wang ◽  
Xinxin Jiang ◽  
...  

Abstract Background: Straw pyrolysis into biochar are beneficial for resource recovery and soil improvement. However, little is known about how biochar influences polycyclic aromatic hydrocarbons (PAHs) metabolic pathways and biogeochemical cycles in PAH-contaminated agricultural soil. Here we assessed the influence of biochar and bacterial inoculant on the soil physicochemical properties, the microorganisms involved in the metabolism of PAH and C, N, P and S cycling.Results: The addition of biochar and bacterial inoculant improved soil fertility and crop nutrition. The community metabolism of phenanthrene was revealed by modeling a gene network based on shotgun metagenomes. Biochar addition in soil promoted the abundance of various phenanthrene-degrading microorganisms involved in multiple steps of phenanthrene catabolism, thereby promoting phenanthrene degradation. Meanwhile, biochar addition increased nitrate reduction and degradation of relatively easily decomposable organic carbon, including cellulose, but it also inhibited lignin and chitin degradation and C and N fixation, while the addition of bacterial inoculant partially mitigated biochar’s inhibitory effects in element cycle and inhibited N2O emission, which alleviated the greenhouse effect.Conclusions: When bioremediating PAH-contaminated soil, recommendation is to use biochar combined with functional microorganism. This work contributes to expand the current knowledge of the treatment of contaminated soil and provide some empirical evidence for the treatment of contaminated soil by biochar and bacterial inoculant.


Sign in / Sign up

Export Citation Format

Share Document