inorganic precipitation
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 10)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
pp. 132383
Author(s):  
Ji-Hyung Han ◽  
Eunjin Jwa ◽  
Hongjun Lee ◽  
Eun Joong Kim ◽  
Joo-Youn Nam ◽  
...  

2021 ◽  
Vol 13 (3) ◽  
pp. 1114
Author(s):  
Chang-wei He ◽  
Hui Wang ◽  
Luo-chun Wang ◽  
Zi-yang Lou ◽  
Li Bai ◽  
...  

The reduction in the fouling is an important way to maintain the steady operation for the nanofiltration (NF) process in leachate treatment. The fouling components from the real leachate treatment process were identified using a scanning electron microscope equipped with X-ray microanalysis (SEM-EDS), infrared spectroscopy (FTIR), atomic analysis and three-dimensional fluorescence (EEM) analysis, and the coagulation of Fe/Al/PAC was selected to reduce the potential pollutants in the leachate, to reduce the potential fouling. It was found that organic humic acid and calcium-magnesium precipitates were the main pollutants in NF fouling. The foulant layer was the result of the combination of organic matter, inorganic precipitation, colloids and microorganisms, and the colloids precipitation is more important, and should be removed in advance. PAC was found to be more efficiency to reduce the colloids and the inorganic matter, among the coagulants selection, with the chemical oxygen demand (COD) removal rate of 55.1%. The commercially available coagulant-poly aluminum chloride (PAC) was chosen as a coagulant. The removal rate of leachate reached 55.1%, and the flow rate through the membrane was increased by 35.8% under the optimum condition (pH was 5.0, PAC dosage was 100 mg/L, and the membrane pressure was 0.4 MPa). Through the pilot scale test, the effluent was connected to the microfiltration membrane and then to the nanofiltration membrane and the practical engineering application is feasible.


2020 ◽  
Author(s):  
Dorothee Hippler ◽  
Thomas Schnedlitz ◽  
Bettina Purgstaller

<p><span>The crystallization pathways of amorphous into crystalline orthocalciumphosphate phases is a widely discussed topic, with processes not yet entirely understood. Current research focuses on medical applications as well as natural sedimentary systems, for example bone-tissue-engineering, bio-mineralization and phosphogenesis, with inorganic precipitation experiments under controlled ambient conditions being the first step to improve our understanding of the fundamental formation processes. By mixing of stock solutions with CaCl<sub>2</sub>/MgCl<sub>2</sub> and NaHPO<sub>4</sub> we created a supersaturated solution in respect to CaPO<sub>4</sub>-phases and varied the pH by adding different amounts of NaOH. Continuous sampling was performed over the period of 24 hours, with sampling intervals after 1 min, 10 min, 60 min and 24 h. In order to record temporal changes in mineralogical and chemical composition, samples (solids and fluids) were investigated by XRD, FTIR, SEM and ICP-OES, respectively. Our experiments yield considerable differences concerning the time of amorphous calcium phosphate (ACP) transformation into hydroxyapatite (HAP), heavily depending on the pH, Ca/P ratio and Mg content of the stock solution. Main results show that a higher pH stabilizes the ACP over a period of the first 60 min, whereas at lower pH the transformation of ACP into the crystalline phase already starts at 10 min after mixing. Increasing the Ca/P ratio of the stock solution results in ACP being less stable and the transformation into HAP occurs earlier. In contrast, the presence of Mg seems to delay the formation of HAP via ACP. After 24 hours the experiments showed nano-crystalline HAP and most likely some other phases as octacalcium phosphate.</span></p>


2020 ◽  
Vol 39 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Qian Wang ◽  
Piroska Lorinczi ◽  
Paul W. J. Glover

The blockage and alteration of wettability in reservoirs caused by asphaltene deposits are problems that contribute to poor oil recovery performance during carbon dioxide (CO2) injection. Oil production and reservoir damage are both controlled by macroscopic interlayer heterogeneity and microscopic pore-throat structure and may be optimized by the choice of flooding method. In this work, the residual oil distribution and the permeability decline caused by organic and inorganic precipitation after miscible CO2 flooding and water-alternating-CO2 (CO2-WAG) flooding have been studied by carrying out core-flooding experiments on a model heterogeneous three-layer reservoir. For CO2, flooding experimental results indicate that the low-permeability layers retain a large oil production potential even in the late stages of production, while the permeability decline due to formation damage is larger in the high-permeability layer. We found that CO2-WAG can reduce the influence of heterogeneity on the oil production, but it results in more serious reservoir damage, with permeability decline caused by CO2–brine–rock interactions becoming significant. In addition, miscible CO2 flooding has been carried out for rocks with similar permeabilities but different wettabilities and different pore-throat microstructures in order to study the effects of wettability and pore-throat microstructure on formation damage. Reservoir rocks with smaller pore-throat sizes and more heterogeneous pore-throat microstructures were found to be more sensitive to asphaltene precipitation, with corresponding lower oil recovery and greater decreases in permeability. However, it was found that the degree of water wetness for cores with larger, more connected pore-throat microstructures became weaker due to asphaltene precipitation to pore surfaces. Decreasing the degree of water wetness was found to be exacerbated by increases in the sweep volume of injected CO2 that arise from cores with larger and better connected pore throats. Erosion of water wetness is a disadvantage for enhanced oil recovery operations as asphaltene precipitation prevention and control measures become more necessary.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maximilian Hallenberger ◽  
Lars Reuning ◽  
Stephen J. Gallagher ◽  
Stefan Back ◽  
Takeshige Ishiwa ◽  
...  

AbstractInorganic precipitation of aragonite is a common process within tropical carbonate environments. Across the Northwest Shelf of Australia (NWS) such precipitates were abundant in the late Pleistocene, whereas present-day sedimentation is dominated by calcitic bioclasts. This study presents sedimentological and geochemical analyses of core data retrieved from the upper 13 meters of IODP Site U1461 that provide a high-resolution sedimentary record of the last ~15 thousand years. Sediments that formed from 15 to 10.1 ka BP are aragonitic and characterised by small needles (<5 µm) and ooids. XRF elemental proxy data indicate that these sediments developed under arid conditions in which high marine alkalinity favoured carbonate precipitation. A pronounced change of XRF-proxy values around 10.1 ka BP indicates a transition to a more humid climate and elevated fluvial runoff. This climatic change coincides with a shelf-wide cessation of inorganic aragonite production and a switch to carbonate sedimentation dominated by skeletal calcite. High ocean water alkalinity due to an arid climate and low fluvial runoff therefore seems to be a prerequisite for the formation of shallow water aragonite-rich sediments on the NWS. These conditions are not necessarily synchronous to interglacial periods, but are linked to the regional hydrological cycle.


Coatings ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 701
Author(s):  
Li-Yuan Zhang ◽  
Yi Shui ◽  
Ling-Ling Zhao ◽  
Ping Zhu ◽  
Wen-Yong Xu ◽  
...  

The precursor for a lithium-ion sieve is prepared using an inorganic precipitation-peptization method with titanium sulfate as the titanium source and lithium acetate as the lithium source. The effects of Ni2+ (Nickel ions) doping on the stability of the sol, crystal morphology and interplanar spacing of Li2TiO3 are investigated. The results indicate that, after Ni2+ doping with varying fractions, the stability of the precursor sol first increases then decreases, and the maximum stabilization time of the precursor sol doped with 1% Ni2+ is 87 h. When doped with 1% Ni2+, the sol performance is most stable, the porous Li2TiO3 is obtained, and the specific surface area of Li2TiO3 increases by up to 1.349 m2/g from 0.911 m2/g. Accompanying the increase in calcination temperature, the inhibition of Ni2+ doping on the growth and crystallization of grains decreases. When the temperature is lower than 750 °C, Ni atoms replace the Ti atoms that are substituted for Li atoms in the original pure Li layer, forming lattice defects, resulting in the disappearance of (002) and (−131) diffraction peaks for Li2TiO3, the reduced ordering of crystal structure, a decrease in the interplanar spacing of the (002) plane, lattice expansion and an increase in the particle size to 100–200 nm. When the temperature exceeds 750 °C, with the increase of calcination temperature, the influence of Ni doping on the growth and crystallinity of grains decreases, and the (002) crystal surface starts to grow again.


2019 ◽  
Vol 244 ◽  
pp. 99-112 ◽  
Author(s):  
Vasileios Mavromatis ◽  
Aridane G. González ◽  
Martin Dietzel ◽  
Jacques Schott

The Analyst ◽  
2019 ◽  
Vol 144 (5) ◽  
pp. 1654-1659 ◽  
Author(s):  
Qing Kang ◽  
Yin Xiao ◽  
Yong Wang

Innovation in sensing strategies is a continual goal pursued by analytical chemists.


Sign in / Sign up

Export Citation Format

Share Document