Moment Generating Function Based Performance Analysis of Maximal-Ratio Combining Diversity Receivers in the Generalized-K Fading Channels

2014 ◽  
Vol 77 (3) ◽  
pp. 1959-1975 ◽  
Author(s):  
Vivek K. Dwivedi ◽  
G. Singh
Author(s):  
B Barua ◽  
MZI Sarkar

This paper is concerned with the analysis of exact symbol error probability (SEP) for cooperative diversity using amplify-and-forward (AF) relaying over independent and non-identical Nakagami-m fading channels. The mathematical formulations for Probability Density Function (pdf) and Moment Generating Function (MGF) of a cooperative link have been derived for calculating symbol error probability with well-known MGF based approach taking M-ary Phase Shift Keying (MPSK) signals as input. The numerical results obtained from this research have been compared with different fading conditions. It is observed that the existence of the diversity link in a relay network plays a dominating role in error performance. Keywords: Symbol Error Probability; Probability Density Function; Moment Generating Function; Nakagami-m fading. DOI: http://dx.doi.org/10.3329/diujst.v6i2.9338 DIUJST 2011; 6(2): 1-5


Author(s):  
Vaibhav S Hendre ◽  
M Murugan ◽  
Sneha Kamthe

<em><span>Multiple antenna configurations can be used to increase the data throughput reducing the effects of multipath fading and interference when channel bandwidth is limited. Orthogonal Space Time Block Codes along with Transmit antenna selection can improve the performance of multiple input multiple output systems. In this paper, we present the Transmit Antenna Selection (TAS) technique based on the Maximal Ratio Combining (MRC) scheme with single antenna selection for image transmission. The performance analysis of the system was carried out under different fading channels i.e. Rayleigh and Rician channel for image input. We design end to end TAS/MRC system in Simulink with advancements in the channel designs and receive diversity techniques along with the feedback models. The Bit Error Rate (BER) analysis was performed for the combinations of number of transmit and receive antennas for TAS/MRC system for various fading environments.</span></em>


Sign in / Sign up

Export Citation Format

Share Document