Robust MMSE Design With Asynchronous Interference Mitigation in Cooperative Base Station Systems

2014 ◽  
Vol 78 (2) ◽  
pp. 889-903 ◽  
Author(s):  
Jingmin Tang ◽  
Kun Zhao ◽  
Chenquan Ni ◽  
Meng Yang ◽  
Junfeng Shi
2008 ◽  
Vol 7 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Hongyuan Zhang ◽  
N.B. Mehta ◽  
A.F. Molisch ◽  
Jin Zhang ◽  
Huaiyu Dai

2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Imad Al-Samman ◽  
Reham Almesaeed ◽  
Angela Doufexi ◽  
Mark Beach

Responding to the unprecedented challenges imposed by the 5G technologies, mobile operators have given significant attention to Heterogeneous Cloud Radio Access Networks (H-CRAN) due to their beneficial features of performing optimization, cost effectiveness, and improving spectral and energy efficiency performance. H-CRAN inherits the attractive benefits of Heterogeneous Networks (HetNet) and the cloud computing by facilitating interference mitigation, scalability, and radio resource control. Consequently, H-CRAN is proposed in this article as a cost-effective potential solution to alleviate intertier interference and improve cooperative processing gains in HetNets by employing cloud computing. H-CRAN can provide efficient resource sharing at the spectrum, network, and infrastructure levels. Therefore, this article proposes H-CRAN cooperative interference mitigation method that enhances the time sharing among Radio Remote Heads (RRH) users. The study proposes an enhanced Almost Blank Subframe (ABSF) technique to increase the SINR and throughput of the small-cell (low power base station) and macrocell users. Simulation results show that the proposed Dynamic Programming-Diverse Almost Blank Subframe (ABSF) Pattern (DP-DAP) scheme improved the macro- and small-cell users up to 56% and 35%, respectively, as compared to other state-of-the-art ABSF schemes.


Author(s):  
Yong Liao ◽  
Yufeng Li ◽  
Shumin Zhang ◽  
Ming Zhao ◽  
Xin Zhou ◽  
...  

For the coexistence and increasing interference of satellite-terrestrial network and terrestrial wireless network, we analyze a typical scenario where the GEO satellite-terrestrial network and the 4G mobile communication network coexist heterogeneously. Besides, a multi-user cognitive system model that secondary satellite terminals interfere the primary MIMO 4G base stations is also proposed, with whose general signal processing is deduced. Meanwhile, DBF technology in 4G base station system is adopted to minimize the cognitive interference caused by multi-antennas and multi-users. And we propose an OBW-FAI. Weight vector is only related to the azimuth of the interferences, thus the proposed algorithm does not need real-time and repeat calculations, and has small complexity. Finally, the numerical simulation results verify that the proposed system and algorithm can effectively reduce interference between satellite-terrestrial network and terrestrial wireless network to a certain extent.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Paweł Sroka ◽  
Adrian Kliks

This paper considers the problem of an efficient and flexible tool for interference mitigation in ultradense heterogeneous cellular 5G networks. Several game-theory based approaches are studied, focusing on noncooperative games, where each base station in the end tries to maximize its payoff. An analysis of backhaul requirements of investigated approaches is carried out, with a proposal of a mechanism for backhaul requirements reduction. Moreover, improvements in terms of energy use optimization are proposed to further increase the system gains. The presented simulation results of a detailed ultradense 5G wireless system show that the discussed game-theoretic approaches are very promising solutions for interference mitigation outperforming the algorithm proposed for LTE-Advanced in terms of the achieved spectral efficiency. Finally, it is proved that the introduction of energy-efficient and backhaul-optimized operation does not significantly degrade the performance achieved with the considered approaches.


Sign in / Sign up

Export Citation Format

Share Document