scholarly journals Base Station Coordination towards an Effective Inter-cell Interference Mitigation

Author(s):  
Moubagou Deflandre Bertrand ◽  
Yong Yu Chang
Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1496
Author(s):  
Ziaul Haq Abbas ◽  
Ghulam Abbas ◽  
Muhammad Sajid Haroon ◽  
Fazal Muhammad ◽  
Sunghwan Kim

In heterogeneous cellular networks (HetNets), densification of small base stations (SBSs) in the macro base station (MBS) coverage region leads to improved network coverage and capacity. However, this improvement is at the cost of inter-cell interference (ICI) due to the high MBS transmit power. The situation deteriorates further when uniformly deployed wideband jammers (WBJs) to initiate distributed denial-of-service (DDoS) attacks are present. With sufficient knowledge about the network parameters, WBJs produce substantial jammer interference (JI) by transmitting unwanted energy in the legitimate band. Such jamming attacks can cause significant JI in the UL communications of MBS edge users (M-EUs) due to i) low uplink (UL) transmit power of user equipment (UE) and ii) longer distances of M-EUs. As a result of ICI and JI, M-EUs are severely affected and go off the coverage due to a low received signal-to-interference ratio (SIR). Hence, to mitigate both ICI and JI, we use a proactive resource allocation scheme known as reverse frequency allocation (RFA). The results indicate that although ICI and JI significantly degrade network performance, RFA employment leads to improved SIR due to effective ICI and JI mitigation.


Electronics ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 144 ◽  
Author(s):  
Muhammad Arshad ◽  
Imran Khan ◽  
Jaime Lloret ◽  
Ignacio Bosch

The 2D precoding technology can only adjust the beam in a horizontal direction through data processing, which will cause serious problems for multiuser systems, especially at the edge of the base station it will cause serious inter-cell interference. To solve this problem, in the frequency-division duplex (FDD) 3D-MIMO Heterogeneous network system, the influence of feedback overhead on system performance under limited feedback mechanism is studied using random geometry. Based on the deployment of a uniform planar array (UPA) at the base station, a 3D-MIMO multiuser codebook design scheme based on horizontal transmission angle and the vertical down-tilt angle is proposed, and the codebook design scheme is simulated and analyzed. The results show that the feedback overhead and the micro base station density affect the system throughput and even affect the bit error rate (BER) of the 3D precoding scheme. Compared with the precoding scheme based on 2D and 3D discrete Fourier transform (DFT) codebooks, this scheme greatly reduces the system’s BER, improves the system’s throughput, and optimizes system performance.


2019 ◽  
Vol 9 (23) ◽  
pp. 5034 ◽  
Author(s):  
Abuzar B. M. Adam ◽  
Xiaoyu Wan ◽  
Zhengqiang Wang

In this paper, we investigate the energy efficiency (EE) maximization in multi-cell multi-carrier non-orthogonal multiple access (MCMC-NOMA) networks. To achieve this goal, an optimization problem is formulated then the solution is divided into two parts. First, we investigate the inter-cell interference mitigation and then we propose an auction-based non-cooperative game for power allocation for base stations. Finally, to guarantee the rate requirements for users, power is allocated fairly to users. The simulation results show that the proposed scheme has the best performance compared with the existing NOMA-based fractional transmit power allocation (FTPA) and the conventional orthogonal frequency division multiple access (OFDMA).


2018 ◽  
Vol 2018 ◽  
pp. 1-17
Author(s):  
Imad Al-Samman ◽  
Reham Almesaeed ◽  
Angela Doufexi ◽  
Mark Beach

Responding to the unprecedented challenges imposed by the 5G technologies, mobile operators have given significant attention to Heterogeneous Cloud Radio Access Networks (H-CRAN) due to their beneficial features of performing optimization, cost effectiveness, and improving spectral and energy efficiency performance. H-CRAN inherits the attractive benefits of Heterogeneous Networks (HetNet) and the cloud computing by facilitating interference mitigation, scalability, and radio resource control. Consequently, H-CRAN is proposed in this article as a cost-effective potential solution to alleviate intertier interference and improve cooperative processing gains in HetNets by employing cloud computing. H-CRAN can provide efficient resource sharing at the spectrum, network, and infrastructure levels. Therefore, this article proposes H-CRAN cooperative interference mitigation method that enhances the time sharing among Radio Remote Heads (RRH) users. The study proposes an enhanced Almost Blank Subframe (ABSF) technique to increase the SINR and throughput of the small-cell (low power base station) and macrocell users. Simulation results show that the proposed Dynamic Programming-Diverse Almost Blank Subframe (ABSF) Pattern (DP-DAP) scheme improved the macro- and small-cell users up to 56% and 35%, respectively, as compared to other state-of-the-art ABSF schemes.


Sign in / Sign up

Export Citation Format

Share Document