Map Services Based on Multiple Mix-zones with Location Privacy Protection over Road Network

2017 ◽  
Vol 97 (2) ◽  
pp. 2617-2632 ◽  
Author(s):  
Qasim Ali Arain ◽  
Zhongliang Deng ◽  
Imran Memon ◽  
Asma Zubedi ◽  
Farman Ali Mangi
2018 ◽  
Vol 220 ◽  
pp. 10001
Author(s):  
Yu Lili ◽  
Zhang Lei ◽  
Su Xiaoguang ◽  
Li Jing ◽  
Zhang Xu ◽  
...  

Compared with the Euclidean space, road network is restricted by its direction in traveling, velocity and some other attribute profiles. So the algorithms that designed for the Euclidean space are usually invalid and difficult to provide privacy protection services. In order to cope with this problem, we have proposed an algorithm to provide the service of collecting anonymous users that their directions in traveling similar with the initiator in the road networks. In this algorithm, the shortest distance between multiple road segments is calculated, and then utilizes the distance to select the user who has the same direction in traveling with the initiator. Consequently, the problem of the discrepancy of the anonymous users in the routing that invalidates the location privacy protection is solved. At last, we had compared this algorithm with other similar algorithms, and through the results of the comparison and the cause of this phenomenon, we have concluded that this algorithm is better not only in the level of privacy protection, but in the performance of execution efficiency.


Author(s):  
Meiyu Pang ◽  
Li Wang ◽  
Ningsheng Fang

Abstract This paper proposes a collaborative scheduling strategy for computing resources of the Internet of vehicles considering location privacy protection in the mobile edge computing environment. Firstly, a multi area multi-user multi MEC server system is designed, in which a MEC server is deployed in each area, and multiple vehicle user equipment in an area can offload computing tasks to MEC servers in different areas by a wireless channel. Then, considering the mobility of users in Internet of vehicles, a vehicle distance prediction based on Kalman filter is proposed to improve the accuracy of vehicle-to-vehicle distance. However, when the vehicle performs the task, it needs to submit the real location, which causes the problem of the location privacy disclosure of vehicle users. Finally, the total cost of communication delay, location privacy of vehicles and energy consumption of all users is formulated as the optimization goal, which take into account the system state, action strategy, reward and punishment function and other factors. Moreover, Double DQN algorithm is used to solve the optimal scheduling strategy for minimizing the total consumption cost of system. Simulation results show that proposed algorithm has the highest computing task completion rate and converges to about 80% after 8000 iterations, and its performance is more ideal compared with other algorithms in terms of system energy cost and task completion rate, which demonstrates the effectiveness of our proposed scheduling strategy.


Sign in / Sign up

Export Citation Format

Share Document