A Cloud-Based Platform for Soybean Plant Disease Classification Using Archimedes Optimization Based Hybrid Deep Learning Model

Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel
2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


2021 ◽  
Author(s):  
J. Annrose ◽  
N. Herald Anantha Rufus ◽  
C. R. Edwin Selva Rex ◽  
D. Godwin Immanuel

Abstract Bean which is botanically called Phaseolus vulgaris L belongs to the Fabaceae family.During bean disease identification, unnecessary economical losses occur due to the delay of the treatment period, incorrect treatment, and lack of knowledge. The existing deep learning and machine learning techniques met few issues such as high computational complexity, higher cost associated with the training data, more execution time, noise, feature dimensionality, lower accuracy, low speed, etc. To tackle these problems, we have proposed a hybrid deep learning model with an Archimedes optimization algorithm (HDL-AOA) for bean disease classification. In this work, there are five bean classes of which one is a healthy class whereas the remaining four classes indicate different diseases such as Bean halo blight, Pythium diseases, Rhizoctonia root rot, and Anthracnose abnormalities acquired from the Soybean (Large) Data Set.The hybrid deep learning technique is the combination of wavelet packet decomposition (WPD) and long short term memory (LSTM). Initially, the WPD decomposes the input images into four sub-series. For these sub-series, four LSTM networks were developed. During bean disease classification, an Archimedes optimization algorithm (AOA) enhances the classification accuracy for multiple single LSTM networks. MATLAB software implements the HDL-AOA model for bean disease classification. The proposed model accomplishes lower MAPE than other exiting methods. Finally, the proposed HDL-AOA model outperforms excellent classification results using different evaluation measures such as accuracy, specificity, sensitivity, precision, recall, and F-score.


Author(s):  
Nazmun Nessa Moon ◽  
Ms. Shayla Sharmin ◽  
Refath Ara Hossain ◽  
Israt Jahan ◽  
Fernaz Narin Nur ◽  
...  

2021 ◽  
Vol 61 ◽  
pp. 101182
Author(s):  
Ümit Atila ◽  
Murat Uçar ◽  
Kemal Akyol ◽  
Emine Uçar

Food is one of the basic needs of human being. We know that the population is rising enormously.so it is more important to feed such a huge population. But nowadays plants are largely affected with various types of diseases. If proper care should not be taken then it will show effect on quality of food products, quantity and finally on productivity of crops.. so, Early detection of plant disease is very essential, but it is very hard to farmers to monitor the crops manually it takes more processing time, huge amount of work, expensive and need expertised persons. Automatic detection of plant diseases helps the farmers to monitor the large fields easily,because our approach of using convolution neural networks provides a chance to discover diseases at the very early stage. By using Image Processing and machine learning models we can detect the plant diseases automatically but the accuracy is very less, early detection is also a major challenge. With the modern advanced developments in deep learning, in our project we have implemented the convolution neural networks(CNN) which comprises of different layers,by using those layers we can automatically detect and classify the diseases present in the plants. High Classification accuracy and more processing speed are the main advantages of our approach. After training the model on color, grayscale and segmented datasets our deep learning model will be capable of classifying a large number of different diseases and our project gives us the name of the disease that the plant has with its confidence level and also provides remedies for corresponding diseases


2021 ◽  
Author(s):  
Dong Jin Park ◽  
Min Woo Park ◽  
Homin Lee ◽  
Young-Jin Kim ◽  
Yeongsic Kim ◽  
...  

Abstract Artificial intelligence is a concept that includes machine learning and deep learning. The deep learning model used in this study corresponds to DNN (deep neural network) by utilizing two or more hidden layers. In this study, MLP (multi-layer perceptron) and machine learning models (XGBoost, LGBM) were used. An MLP consists of at least three layers: an input layer, a hidden layer, and an output layer. In general, tree models or linear models using machine learning are widely used for classification. We analyzed our data by applying deep learning (MLP) to improve the performance, which showed good results. The deep learning and ML models showed differences in predictive power and disease classification patterns. We used a confusion matrix and analyzed feature importance using the SHAP value method. Here, we present a protocol to confirm that the use of deep learning can show good performance in disease classification using hospital numerical structured data (laboratory test).


Sign in / Sign up

Export Citation Format

Share Document