Low-rank dimensionality reduction for multi-modality neurodegenerative disease identification

2018 ◽  
Vol 22 (2) ◽  
pp. 907-925 ◽  
Author(s):  
Xiaofeng Zhu ◽  
Heung-Il Suk ◽  
Dinggang Shen
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joshua T. Vogelstein ◽  
Eric W. Bridgeford ◽  
Minh Tang ◽  
Da Zheng ◽  
Christopher Douville ◽  
...  

AbstractTo solve key biomedical problems, experimentalists now routinely measure millions or billions of features (dimensions) per sample, with the hope that data science techniques will be able to build accurate data-driven inferences. Because sample sizes are typically orders of magnitude smaller than the dimensionality of these data, valid inferences require finding a low-dimensional representation that preserves the discriminating information (e.g., whether the individual suffers from a particular disease). There is a lack of interpretable supervised dimensionality reduction methods that scale to millions of dimensions with strong statistical theoretical guarantees. We introduce an approach to extending principal components analysis by incorporating class-conditional moment estimates into the low-dimensional projection. The simplest version, Linear Optimal Low-rank projection, incorporates the class-conditional means. We prove, and substantiate with both synthetic and real data benchmarks, that Linear Optimal Low-Rank Projection and its generalizations lead to improved data representations for subsequent classification, while maintaining computational efficiency and scalability. Using multiple brain imaging datasets consisting of more than 150 million features, and several genomics datasets with more than 500,000 features, Linear Optimal Low-Rank Projection outperforms other scalable linear dimensionality reduction techniques in terms of accuracy, while only requiring a few minutes on a standard desktop computer.


Energy ◽  
2021 ◽  
pp. 122680
Author(s):  
Fahad Iqbal Syed ◽  
Temoor Muther ◽  
Amirmasoud Kalantari Dahaghi ◽  
Shahin Neghabhan

2019 ◽  
Vol 9 (1) ◽  
pp. 157-193 ◽  
Author(s):  
Marius Junge ◽  
Kiryung Lee

Abstract The restricted isometry property (RIP) is an integral tool in the analysis of various inverse problems with sparsity models. Motivated by the applications of compressed sensing and dimensionality reduction of low-rank tensors, we propose generalized notions of sparsity and provide a unified framework for the corresponding RIP, in particular when combined with isotropic group actions. Our results extend an approach by Rudelson and Vershynin to a much broader context including commutative and non-commutative function spaces. Moreover, our Banach space notion of sparsity applies to affine group actions. The generalized approach in particular applies to high-order tensor products.


2018 ◽  
Vol 108 ◽  
pp. 202-216 ◽  
Author(s):  
Na Han ◽  
Jigang Wu ◽  
Yingyi Liang ◽  
Xiaozhao Fang ◽  
Wai Keung Wong ◽  
...  

2018 ◽  
Vol 27 (11) ◽  
pp. 5261-5274 ◽  
Author(s):  
Luofeng Xie ◽  
Ming Yin ◽  
Xiangyun Yin ◽  
Yun Liu ◽  
Guofu Yin

2022 ◽  
pp. 17-25
Author(s):  
Nancy Jan Sliper

Experimenters today frequently quantify millions or even billions of characteristics (measurements) each sample to address critical biological issues, in the hopes that machine learning tools would be able to make correct data-driven judgments. An efficient analysis requires a low-dimensional representation that preserves the differentiating features in data whose size and complexity are orders of magnitude apart (e.g., if a certain ailment is present in the person's body). While there are several systems that can handle millions of variables and yet have strong empirical and conceptual guarantees, there are few that can be clearly understood. This research presents an evaluation of supervised dimensionality reduction for large scale data. We provide a methodology for expanding Principal Component Analysis (PCA) by including category moment estimations in low-dimensional projections. Linear Optimum Low-Rank (LOLR) projection, the cheapest variant, includes the class-conditional means. We show that LOLR projections and its extensions enhance representations of data for future classifications while retaining computing flexibility and reliability using both experimental and simulated data benchmark. When it comes to accuracy, LOLR prediction outperforms other modular linear dimension reduction methods that require much longer computation times on conventional computers. LOLR uses more than 150 million attributes in brain image processing datasets, and many genome sequencing datasets have more than half a million attributes.


Sign in / Sign up

Export Citation Format

Share Document