Decomposition of organic chemical components in relation to nitrogen dynamics in leaf litter of 14 tree species in a cool temperate forest

2004 ◽  
Vol 20 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Takashi Osono ◽  
Hiroshi Takeda
2013 ◽  
Vol 55 (2) ◽  
pp. 261-275 ◽  
Author(s):  
Takeshi Torimaru ◽  
Shinji Akada ◽  
Kiyoshi Ishida ◽  
Shuichi Matsuda ◽  
Machiko Narita

2020 ◽  
Vol 6 (4) ◽  
pp. 186
Author(s):  
Takashi Osono

The ability of Xylaria species obtained from tropical wood and leaf litter to cause a mass loss of lignin and carbohydrates in wood was examined in vitro with pure culture decomposition tests. The mass loss of wood of four tree species caused by nine Xylaria isolates ranged from 4.5% to 28.4% of the original wood mass. These Xylaria isolates have a potential ability to decompose lignin and other recalcitrant compounds, collectively registered as acid unhydrolyzable residues or Klason lignin in wood. The origin of isolates (i.e., isolates from wood versus leaf litter) did not affect the mass loss of acid unhydrolyzable residue in wood. The Xylaria isolates tested generally caused a selective decomposition of polymer carbohydrates in wood in preference to acid unhydrolyzable residue. The mass loss of acid unhydrolyzable residue caused by Xylaria isolates varied with the tree species of the wood and was negatively related to the initial content of acid unhydrolyzable residue in wood, implying the limiting effect of lignin and recalcitrant compounds on wood decomposition by Xylaria isolates.


2015 ◽  
Vol 30 (2) ◽  
pp. 104-115 ◽  
Author(s):  
Karibu Fukuzawa ◽  
Hideaki Shibata ◽  
Kentaro Takagi ◽  
Fuyuki Satoh ◽  
Takayoshi Koike ◽  
...  

2012 ◽  
Vol 58 (4) ◽  
pp. 507-515 ◽  
Author(s):  
Takashi Osono ◽  
Hayato Masuya

Diversity and species composition of endophytic fungi on leaves of 11 tree species in Betulaceae were studied, with reference to climatic, tree species, and seasonal variations. A total of 186 fungal isolates were obtained from 190 leaves collected in a subalpine forest, a cool temperate forest, and a subtropical forest in Japan, and were divided into 46 operational taxonomic units (OTUs) according to the base sequences of D1–D2 region of large subunit rDNA. The 2 most frequent OTUs were Muscodor sp. and Nemania sp. in Xylariaceae, followed by Gnomonia sp., Glomerella acutata , Apiosporopsis sp., Asteroma sp., and Cladosporium cladosporioides . The similarities of OTU composition in endophytic fungal assemblages on leaves of Betulaceae were generally low among the forests of different climatic regions. Fungal OTU compositions were relatively similar between 2 Betula species in the subalpine forest, whereas 7 tree species in the cool temperate forest were divided into 3 groups according to the similarity of endophytic fungal assemblages on the leaves, with 4 Carpinus species assigned into 2 of the 3 groups. The similarity of endophytic fungal assemblages between August and October was relatively high in the subalpine forest, whereas the seasonal changes were generally greater (i.e., the similarities among sampling dates were lower) in the cool temperate forest.


Sign in / Sign up

Export Citation Format

Share Document