Pine stumps act as hotspots for seedling regeneration after pine dieback in a mixed natural forest dominated by Chamaecyparis obtusa

2018 ◽  
Vol 33 (6) ◽  
pp. 1169-1179 ◽  
Author(s):  
Yu Fukasawa
2021 ◽  
Vol 103 (3) ◽  
pp. 207-214
Author(s):  
Hisashi Sugita ◽  
Hiromichi Kushima ◽  
Haruhiko Mimura ◽  
Naoaki Tate ◽  
Masayuki Imamura ◽  
...  

1999 ◽  
Vol 150 (12) ◽  
pp. 484-488 ◽  
Author(s):  
Wolf Hockenjos

Concepts of near-natural forestry are in great demand these days. Most German forest administrations and private forest enterprises attach great importance to being as «near-natural» as possible. This should allow them to make the most of biological rationalisation. The concept of near-natural forestry is widely accepted, especially by conservationists. However, it is much too early to analyse how successful near-natural forestry has been to date, and therefore to decide whether an era of genuine near-natural forest management has really begun. Despite wide-spread recognition, near-natural forestry is jeopardised by mechanised timber harvesting, and particularly by the large-timber harvester. The risk is that machines, which are currently just one element of the timber harvest will gain in importance and gradually become the decisive element. The forest would then be forced to meet the needs of machinery, not the other way round. Forests would consequently become so inhospitable that they would bear no resemblance to the sylvan image conjured up by potential visitors. This could mean taking a huge step backwards: from a near-natural forest to a forest dominated by machinery. The model of multipurpose forest management would become less viable, and the forest would become divided into areas for production, and separate areas for recreation and ecology. The consequences of technical intervention need to be carefully considered, if near-natural forestry is not to become a thing of the past.


2011 ◽  
Vol 35 (9) ◽  
pp. 914-925 ◽  
Author(s):  
Xing-Fu YAN ◽  
Qian DU ◽  
Chun SHI ◽  
Li-Biao ZHOU ◽  
Kao-Wen ZHANG

1999 ◽  
Vol 39 (12) ◽  
pp. 99-107 ◽  
Author(s):  
Takao Kunimatsu ◽  
Miki Sudo ◽  
Takeshi Kawachi

In the last ten years, the number of golf courses has been increasing in some countries as the game gains popularity. This indicates, a need to estimate the nutrient loading from golf courses in order to prevent the eutrophication of water bodies. Nutrient concentrations and flow rates of a brook were measured once a week from 1989 to 1990 at two sites: Site A of a brook flowing out from D-golf course (53 ha) and Site B of the same brook discharging into the golf course from an upper forested basin (23 ha) covered mainly with planted Japanese cypress (Chamaecyparis obtusa SIEB. et ZUCC). The bedrock of the area was granite. The annual values of precipitation and mean temperature were 1947 mm and 13.5°C in 1989, respectively. The arithmetic average values of discharge from the forested basin and the golf course were 0.392 and 1.26 mg/l total nitrogen (TN), 0.0072 and 0.145 mg/l total phosphorus (TP), 0.82 and 3.53 mg/l potassium ion (K+, 5.92 and 8.24 mg/l sodium ion (Na+), 2.1 and 9.9 mg/l suspending solid (0.001–2.0 mm, SS), 0.087 and 0.147 mS/cm electric conductivity (EC), and 0.031 and 0.037 m3/km2•s specific discharge, respectively. The loading rates of the forested basin and the golf course were 5.42 and 13.5 TN, 0.133 and 3.04 TP, 8.84 and 33.9 K+, 55.0 and 73.0 Na+, and 54.3 and 118 SS in kg/ha•y. The leaching and runoff rate of nitrogen in the chemical fertilizers applied on the golf course was calculated as 32%. These results indicated the importance of controlling the phosphorus loading for the management of golf courses.


Sign in / Sign up

Export Citation Format

Share Document