seedling regeneration
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 27)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Author(s):  
◽  
Katherine De Silva

<p>Urban forest restoration programmes are a key tool used to initiate, re-create or accelerate the succession of forest species; improving ecosystem services, function, resilience and biodiversity. Succession is a temporal shift in species dominance driven by abiotic and biotic influences, but over decadal timescales the trajectory and success of restoration plantings in degraded urban environments can be hindered. To facilitate the successful reconstruction of forest ecosystems from scratch, an understanding of the temporal patterns in planted forest development, dynamics of seedling regeneration and dominant drivers of seedling diversity is required.  Using a chronosequence approach, permanent plots were established at 44 restored urban forests aged 5 to 59 years since initial plantings took place, across five New Zealand cities between Wellington and Invercargill. Vegetation surveys were undertaken and data on micro-climate were collected. This study examined the 1) temporal dynamics of restored urban forest development and seedling regeneration and 2) dominant drivers of seedling regeneration. Data were analysed using linear regression models, breakpoint analysis and mixed-effects modelling.  Early forest development (<20 years) exhibited the most changes in canopy composition and structure, forest floor dynamics, seedling community and microclimate. This period saw significant increases in canopy stem abundance, height, basal area and leaf litter cover. Significant declines occurred for light transmittance, herbaceous cover and daily soil and air temperature range within the same timeframe. Dominant traits amongst the seedling community included early successional species, tree species, shade and drought tolerant species, insect-pollinated species and frugivory dispersed species. Seedlings with these traits had higher species richness levels across the whole chronosequence.  Collectively, five biotic drivers representing forest composition, structure and landscape factors strongly influenced seedling diversity. Seedling diversity increased with the proportion of surrounding natural landcover, sapling diversity, basal area, canopy diversity and herbaceous cover. The influence of these predictors of seedling diversity, was more significant when modelled as a set, than when viewed independently. Geographic location (city) was indicated as a stronger predictor for similarities in canopy and seedling community composition than the age of the restoration planting. This was shown by stronger clustering of sites according to their city, more so than forest planting age, in a non-metric multidimensional scaling analysis.  Our results provide valuable insight to restoration practitioners on the outcomes of urban restoration programmes implemented across much of New Zealand and helps close the gap between the science of restoration ecology and the practice of ecological restoration.</p>


2021 ◽  
Author(s):  
◽  
Katherine De Silva

<p>Urban forest restoration programmes are a key tool used to initiate, re-create or accelerate the succession of forest species; improving ecosystem services, function, resilience and biodiversity. Succession is a temporal shift in species dominance driven by abiotic and biotic influences, but over decadal timescales the trajectory and success of restoration plantings in degraded urban environments can be hindered. To facilitate the successful reconstruction of forest ecosystems from scratch, an understanding of the temporal patterns in planted forest development, dynamics of seedling regeneration and dominant drivers of seedling diversity is required.  Using a chronosequence approach, permanent plots were established at 44 restored urban forests aged 5 to 59 years since initial plantings took place, across five New Zealand cities between Wellington and Invercargill. Vegetation surveys were undertaken and data on micro-climate were collected. This study examined the 1) temporal dynamics of restored urban forest development and seedling regeneration and 2) dominant drivers of seedling regeneration. Data were analysed using linear regression models, breakpoint analysis and mixed-effects modelling.  Early forest development (<20 years) exhibited the most changes in canopy composition and structure, forest floor dynamics, seedling community and microclimate. This period saw significant increases in canopy stem abundance, height, basal area and leaf litter cover. Significant declines occurred for light transmittance, herbaceous cover and daily soil and air temperature range within the same timeframe. Dominant traits amongst the seedling community included early successional species, tree species, shade and drought tolerant species, insect-pollinated species and frugivory dispersed species. Seedlings with these traits had higher species richness levels across the whole chronosequence.  Collectively, five biotic drivers representing forest composition, structure and landscape factors strongly influenced seedling diversity. Seedling diversity increased with the proportion of surrounding natural landcover, sapling diversity, basal area, canopy diversity and herbaceous cover. The influence of these predictors of seedling diversity, was more significant when modelled as a set, than when viewed independently. Geographic location (city) was indicated as a stronger predictor for similarities in canopy and seedling community composition than the age of the restoration planting. This was shown by stronger clustering of sites according to their city, more so than forest planting age, in a non-metric multidimensional scaling analysis.  Our results provide valuable insight to restoration practitioners on the outcomes of urban restoration programmes implemented across much of New Zealand and helps close the gap between the science of restoration ecology and the practice of ecological restoration.</p>


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 298
Author(s):  
Linling Yao ◽  
Jialin Huang ◽  
Shibao Zhang

Paphiopedilum tigrinum is an endangered orchid with high ornamental value. However, seed germination and seedling regeneration in P. tigrinum is very difficult in vitro. Little is known about why P. tigrinum seedlings are difficult to propagate or how to improve the seed germination and seedling rates of this species. In this study, we investigated the developmental process of P. tigrinum from asymbiotic seed germination to seedling rooting by comparing it with P. appletoniantum, a much easier species for germination and seedling formation. We found that asymbiotic seed germination in P. tigrinum is limited by severe browning of the protocorm at the seed germination stage, and protocorm rooting at the differentiation stage was also proved to be difficult. The optimal medium for seed germination of P. tigrinum was a modified Harvais (mHa) medium supplemented with 0.5 mg·L−1 kinetin (Kin), 0.1 g·L−1 activated charcoal (AC) and 100 mL·L−1 coconut water (CW). At the protocorm differentiation stage, seedlings with 1–2 leaves were obtained on a 1/4 MS medium supplemented with 1.0 mg·L−1 6-benzylaminopurin (BA), 0.3 g·L−1 AC and 50–100 mL·L−1 CW after culturing for 120 day. At the seedling subculture stage, a 1/2 MS medium supplemented with 0.5–1.5 g·L−1 AC and 100 mL·L−1 CW was better for leaf and root growth of P. tigrinum. At the rooting stage, a 1/2 MS medium supplemented with 1.0 g·L−1 AC, 0.5 g·L−1 dolomite flour, 15 g·L−1 potato homogenate and 30 g·L−1 banana homogenate was most suitable for the growth and rooting of seedlings. This study has established an effective protocol for seed germination and seedling regeneration of P. tigrinum.


Author(s):  
Frederick Gyasi Damptey ◽  
Ernest Adofo ◽  
Akwasi Duah-Gyamfi ◽  
Daniel Adusu ◽  
Emmanuel Opuni-Frimpong

Ecosystems ◽  
2021 ◽  
Author(s):  
Theresa S. Ibáñez ◽  
David A. Wardle ◽  
Michael J. Gundale ◽  
Marie-Charlotte Nilsson

AbstractWildfire disturbance is important for tree regeneration in boreal ecosystems. A considerable amount of literature has been published on how wildfires affect boreal forest regeneration. However, we lack understanding about how soil-mediated effects of fire disturbance on seedlings occur via soil abiotic properties versus soil biota. We collected soil from stands with three different severities of burning (high, low and unburned) and conducted two greenhouse experiments to explore how seedlings of tree species (Betula pendula, Pinus sylvestris and Picea abies) performed in live soils and in sterilized soil inoculated by live soil from each of the three burning severities. Seedlings grown in live soil grew best in unburned soil. When sterilized soils were reinoculated with live soil, seedlings of P. abies and P. sylvestris grew better in soil from low burn severity stands than soil from either high severity or unburned stands, demonstrating that fire disturbance may favor post-fire regeneration of conifers in part due to the presence of soil biota that persists when fire severity is low or recovers quickly post-fire. Betula pendula did not respond to soil biota and was instead driven by changes in abiotic soil properties following fire. Our study provides strong evidence that high fire severity creates soil conditions that are adverse for seedling regeneration, but that low burn severity promotes soil biota that stimulates growth and potential regeneration of conifers. It also shows that species-specific responses to abiotic and biotic soil characteristics are altered by variation in fire severity. This has important implications for tree regeneration because it points to the role of plant–soil–microbial feedbacks in promoting successful establishment, and potentially successional trajectories and species dominance in boreal forests in the future as fire regimes become increasingly severe through climate change.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 32
Author(s):  
Judy A. Foulkes ◽  
Lynda D. Prior ◽  
Steven W. J. Leonard ◽  
David M. J. S. Bowman

Australian montane sclerophyll shrubland vegetation is widely considered to be resilient to infrequent severe fire, but this may not be the case in Tasmania. Here, we report on the vegetative and seedling regeneration response of a Tasmanian non-coniferous woody montane shrubland following a severe fire, which burned much of the Great Pine Tier in the Central Plateau Conservation Area during the 2018–2019 fire season when a historically anomalously large area was burned in central Tasmania. Our field survey of a representative area burned by severe crown fire revealed that more than 99% of the shrubland plants were top-killed, with only 5% of the burnt plants resprouting one year following the fire. Such a low resprouting rate means the resilience of the shrubland depends on seedling regeneration from aerial and soil seedbanks or colonization from plants outside the burned area. Woody species’ seedling densities were variable but generally low (25 m−2). The low number of resprouters, and reliance on seedlings for recovery, suggest the shrubland may not be as resilient to fire as mainland Australian montane shrubland, particularly given a warming climate and likely increase in fire frequency.


2021 ◽  
Author(s):  
Theresa S. Ibáñez ◽  
David A. Wardle ◽  
Michael J. Gundale ◽  
Marie-Charlotte Nilsson

&lt;p&gt;Changes in fire regime of boreal forests are predicted to alter plant and soil community structure and cause elevated tree mortality, increased loss of soil organic matter and reduced survival and functioning of soil microbial communities. While the impact of wildfire disturbance on plant mortality and post-fire successions in boreal forests has been studied extensively, little is known about how changes in soil properties after fire, including biotic and abiotic properties, individually and interactively impact tree seedling regeneration. The aim of this study was therefore to disentangle how tree seedling performance is independently and interactively controlled by soil biotic versus abiotic properties following wildfire.&lt;/p&gt;&lt;p&gt;We performed two greenhouse experiments in which seedlings of &lt;em&gt;Betula pendula&lt;/em&gt;, &lt;em&gt;Pinus sylvestris&lt;/em&gt; and &lt;em&gt;Picea abies&lt;/em&gt; were grown in soils collected from forest stands in east-central Sweden that had been subjected to three burn severities (high, low and unburnt) following a large-scale wildfire. The first experiment consisted of live soil originating from every stand in each burn severity class crossed with each tree species. The second experiment was similar, except that all soil was first sterilized, and then was crossed with live soil inoculum originating from each of the burn severity classes and grown with each tree species. The results showed that tree seedlings subjected to live soil grew best in soil from unburnt stands (experiment 1), and that &lt;em&gt;P. abies &lt;/em&gt;and &lt;em&gt;P. sylvestris&lt;/em&gt; seedlings increased growth when planted in soil inoculated with biota from low burn severity stands compared to high burn severity or unburnt stands (experiment 2). In contrast, &lt;em&gt;B. pendula&lt;/em&gt; was not responsive to soil inoculum treatments, but instead was driven by post-fire abiotic properties of soils. These results indicate that fire disturbances may lead to reduced regeneration of conifers, unless soil biota is maintained or has recovered, and further suggests that soil from high burn severity stands may constrain seedling regeneration, whereas soil biota from low burn severity stands promotes growth and regeneration of conifers. Our study also shows that different seedling species respond differently to abiotic and biotic soil properties altered by different burn severities, which is relevant because burn probability and fire intensity are projected to increase and become more common in many parts of the boreal region as the climate warms.&lt;/p&gt;


2021 ◽  
Vol 479 ◽  
pp. 118552
Author(s):  
Marcin Zadworny ◽  
Joanna Mucha ◽  
Andrzej M. Jagodziński ◽  
Paulina Kościelniak ◽  
Piotr Łakomy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document