Quantitative and qualitative assessment of the impact of climate change on a combined sewer overflow and its receiving water body

2015 ◽  
Vol 22 (15) ◽  
pp. 11905-11921 ◽  
Author(s):  
Eustache Gooré Bi ◽  
Frédéric Monette ◽  
Philippe Gachon ◽  
Johnny Gaspéri ◽  
Yves Perrodin
2016 ◽  
Vol 27 ◽  
pp. 430-438 ◽  
Author(s):  
Hessam Tavakol-Davani ◽  
Erfan Goharian ◽  
Carly H. Hansen ◽  
Hassan Tavakol-Davani ◽  
Defne Apul ◽  
...  

Author(s):  
Chaodong Li ◽  
Zhanbin Li ◽  
Mingyi Yang ◽  
Bo Ma ◽  
Baiqun Wang

Under global climate change and pressure from human activities, soil erosion is becoming a major concern in the quest for regional sustainable development in the Kagera basin (KB). However, few studies in this region have comprehensively considered the impact of climate change and human influence on soil erosion, and the associated processes are unclear. Based on the premise of quantifying climate change, human influence, and soil erosion, this study undertook a neighborhood analysis as the theoretical support, for a grey relation analysis which was conducted to realize the qualitative assessment of the influence of climate change and human activities on soil erosion. The results show that 90.32% of the KB saw climate change as having a greater influence on soil erosion than human influence, with the remaining area 9.68% seeing human influence having a greater impact than climate change, mainly as a result of the effect of rangeland and farmland. The average soil erosion rate of the KB shows a very low level (10.54 t ha−1 yr−1), with rangeland and farmland being the main land use/land cover (LULC) types that see soil loss, followed by forest, wetland, and built-up areas. The climate change trends of the KB show the most dramatic changes in the northeast and southwest, gradually decreasing towards the line crossing from the Birunga National Park (Rwanda) to the Keza district (Tanzania). The human influence intensity (HII) shows a high level in the KB (21.93), where it is higher in the west and lower in the east of the basin.


2020 ◽  
Vol 55 (3) ◽  
pp. 266-274
Author(s):  
Austin Taterka ◽  
Robert Miskewitz ◽  
Robert R. Sharp ◽  
Jurek Patoczka

Combined sewer overflow (CSO) water introduces pathogens to receiving waters. To control pathogenic releases, chlorine may be added to disinfect CSO water. The added chlorine may react with water constituents to form oxidative species known as chlorine-produced oxidants (CPO). CPO are the sum of free and combined oxidative species that form upon adding free chlorine-bearing compounds (e.g. gaseous chlorine or hypochlorite) to water. CPO discharge is often regulated by governing agencies. Current methods to model CPO behavior do not account for CPO decay and dilution simultaneously in receiving water. This study creates a novel model for CPO demand and dilution in receiving water from chlorinated effluent in order to determine site-specific practices for implementation of a CSO water disinfection regime. To do this, representative receiving water was collected and dosed with 1, 2, and 4 mg/L chlorine. The residual chlorine was measured at intervals up to 30 min after dosing. The immediate and subsequent chlorine demand was calculated, with the subsequent demand modeled by simultaneous application of dilution and decay using pseudo-first-order decay kinetics. A comparison of model calculations indicates that application of dilution before decay underestimates CPO demand, while application of decay before dilution overestimates CPO demand.


2021 ◽  
Vol 3 ◽  
Author(s):  
Andrew Roseboro ◽  
Maria Nariné Torres ◽  
Zhenduo Zhu ◽  
Alan J. Rabideau

Combined sewer overflows (CSOs) release pollutants collected in urban runoff into local waterways, impacting both aquatic life and human health. The impact of climate change on precipitation may result in an increase in the frequency and magnitude of heavy precipitation events, with a corresponding increase in CSO discharges. The installation of Green Infrastructure (GI) such as Porous Pavements (PP) is a resilient approach to mitigate CSO events. However, an understanding of the impact of climate change on CSO events and the effectiveness of GI practices is crucial for designing sustainable urban stormwater management systems. Using the Storm Water Management Model (SWMM), the performance of PP as a CSO abatement strategy was studied for the city of Buffalo, New York, USA. This paper used the Intensity-Duration-Frequency (IDF) curves for current (1970–1999) and future (2070–2099) design rainfall scenarios, with four rainfall durations (1, 6, 12, and 24 hours) and four return periods (2, 10, 50, and 100 years). The simulation results show that (1) current 100-year events generate CSO volumes similar to predicted 50-year events; (2) CSO volumes could increase by 11–73% in 2070–2099 compared to 1970–1999 when no GI intervention is performed; and (3) the installation of PP can reduce 2–31% of future CSO volume. This case study demonstrates the regional CSO challenges posed by climate change and supports the use of GI as a mitigation strategy.


2021 ◽  
Author(s):  
Nawshin Rummnan

A combined-sewer overflow (CSO) is a significant contributor of contamination to surface waters. During a rain event, the flow in a combined sewer system (CSS) may exceed the capacity of the intercepting sewer leading to a wastewater treatment plant, thus releasing a mixture of storm water and raw sanitary wastewater into the receiving water. As CSOs contain untreated domestic, commercial, and industrial wastes, as well as surface runoff, many different types of contaminants can be present. Because of these contaminants and the volume of the flows, CSOs can cause a variety of adverse impacts on the physical characteristics of surface water, impair the viability of aquatic habitats, and pose a potential threat to drinking water supplies. The resulting short-term problems are poor aesthetics (floatables, turbidity, oil and grease), and beach closure due to increased harmful bacteria levels. The long term impacts include reduced dissolved oxygen in receiving waters, eutrophication and sediment contamination. Since CSO is considered to be a major source of water quality impairment for the receiving waters, much attention has been directed to reducing the quantity and quality of CSO discharged to meet the Ministry of Environment guidelines. There are several approaches to control the quantity and quality of CSO. The selection of a particular treatment technology depends on various factors such as site conditions, CSO characteristics, receiving water requirements. One of the emerging options is the vortex separator technology for High Rate Treatment (HRT) facilities at overflow location. There are many devices for CSO control in different trade names where vortex separator technology has been used (e.g. EPA Swirl Concentration, FluidSep(TM), Storm King(TM), CDS®). This study articulates the different CSO control technologies with emphasized [sic] on vortex separator technology. The City of Niagara Falls HRT pilot project for CSO control to the Niagara River is presented as a case study in this report. The performance of two HRT devices - Storm King(TM) and CDS® are evaluated in the pilot project. Analytical Probabilistic Model has been used a a tool in this study to evaluate the potential pollution reduction at the Niagara Falls CSO system.


1990 ◽  
Vol 22 (10-11) ◽  
pp. 15-22 ◽  
Author(s):  
M. Cherrered ◽  
B. Chocat

Until a few years ago, there was not much research in France into Combined Sewer Overflow phenomena in storm weather. The water of urban runoff has always been considered “clean” and one considered that the dilution of dry weather flows in storm water decreased the impact of the pollution generated by overflows. Now, with increased urban development and realization of the importance of pollution caused by urban runoff, the problem can be considered differently. Indeed, some quality studies of receiving waters show that combined sewer networks represent an important pollution source for the natural environment, due to the increasing relative effect of combined sewer overflow discharge into receiving waters. Thus, combined sewer overflows have until recently been the least known part of the sewer system. In this present communication, methodology to estimate combined overflows has been elaborated after exploitation of data resulted from ten French real case studies where such problems were observed. This study has been realized in four steps:- A bibliography study to discover the actual state of the problem in terms of existent methods concerning both experimentation and modelling and to define the needs of the research.- Ten French studies have been selected, analysed, and used to define the different methods used, and to show methodological lacunas from the observations and results realized. Elements of improvement have been proposed.- Methods and new propositions have been defined and a coherent methodological diagram has been realized to compare and test these methods.- Computer tools have been conceived and tested in the ten study cases.


2021 ◽  
Author(s):  
Nawshin Rummnan

A combined-sewer overflow (CSO) is a significant contributor of contamination to surface waters. During a rain event, the flow in a combined sewer system (CSS) may exceed the capacity of the intercepting sewer leading to a wastewater treatment plant, thus releasing a mixture of storm water and raw sanitary wastewater into the receiving water. As CSOs contain untreated domestic, commercial, and industrial wastes, as well as surface runoff, many different types of contaminants can be present. Because of these contaminants and the volume of the flows, CSOs can cause a variety of adverse impacts on the physical characteristics of surface water, impair the viability of aquatic habitats, and pose a potential threat to drinking water supplies. The resulting short-term problems are poor aesthetics (floatables, turbidity, oil and grease), and beach closure due to increased harmful bacteria levels. The long term impacts include reduced dissolved oxygen in receiving waters, eutrophication and sediment contamination. Since CSO is considered to be a major source of water quality impairment for the receiving waters, much attention has been directed to reducing the quantity and quality of CSO discharged to meet the Ministry of Environment guidelines. There are several approaches to control the quantity and quality of CSO. The selection of a particular treatment technology depends on various factors such as site conditions, CSO characteristics, receiving water requirements. One of the emerging options is the vortex separator technology for High Rate Treatment (HRT) facilities at overflow location. There are many devices for CSO control in different trade names where vortex separator technology has been used (e.g. EPA Swirl Concentration, FluidSep(TM), Storm King(TM), CDS®). This study articulates the different CSO control technologies with emphasized [sic] on vortex separator technology. The City of Niagara Falls HRT pilot project for CSO control to the Niagara River is presented as a case study in this report. The performance of two HRT devices - Storm King(TM) and CDS® are evaluated in the pilot project. Analytical Probabilistic Model has been used a a tool in this study to evaluate the potential pollution reduction at the Niagara Falls CSO system.


Sign in / Sign up

Export Citation Format

Share Document