Nitrate and carbon matter removals from real effluents using Si/BDD electrode

2016 ◽  
Vol 24 (11) ◽  
pp. 9895-9906 ◽  
Author(s):  
Mouna Ghazouani ◽  
Hanene Akrout ◽  
Latifa Bousselmi
Keyword(s):  
2015 ◽  
Vol 14 (6) ◽  
pp. 1339-1345
Author(s):  
Monica Ihos ◽  
Florica Manea ◽  
Maria Jitaru ◽  
Corneliu Bogatu ◽  
Rodica Pode

2021 ◽  
Vol 771 ◽  
pp. 145430
Author(s):  
Jingxuan Pei ◽  
Xiang Yu ◽  
Songbo Wei ◽  
Rabah Boukherroub ◽  
Yihe Zhang

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
J. A. Barrios ◽  
A. Cano ◽  
F. F. Rivera ◽  
M. E. Cisneros ◽  
U. Durán

Abstract Background Most of the organic content of waste activated sludge (WAS) comprises microbial cells hard to degrade, which must be pre-treated for energy recovery by anaerobic digestion (AD). Electrooxidation pre-treatment (EOP) with boron-doped diamond (BDD) electrode have been considered a promising novel technology that increase hydrolysis rate, by the disintegrating cell walls from WAS. Although electrochemical oxidation could efficiently solubilize organic substances of macromolecules, limited reports are available on EOP of WAS for improving AD. In this endeavour, the mathematical optimization study and the energy analysis of the effects of initial total solids concentrations [TS] of WAS and current density (CD) during EOP on the methane production and removal of chemical oxygen demand (COD) and volatile solids (VS) were investigated. Because limited reports are available on EOP of WAS for improving biogas production, it is not well understood; however, it has started to attract interest of scientists and engineers. Results In the present work, the energy recovery as biogas and WAS conversion were comprehensively affected by CD and [TS], in an integrated EOP and AD system. When working with WAS at 3% of [TS] pre-treated at current density of 24.1 mA/cm2, the highest COD and VS removal were achieved, making it possible to obtain the maximum methane (CH4) production of 305 N-L/kg VS and a positive energy balance of 1.67 kWh/kg VS. Therefore, the current densities used in BDD electrode are adequate to produce the strong oxidant (hydroxyl radical, ·OH) on the electrode surface, allow the oxidation of organic compounds that favours the solubilization of particulate matter and VS from WAS. Conclusions The improvement of VS removal and COD solubilization were due to the effects of pre-treatments, which help to break down the microbial cells for faster subsequent degradation; this allows a decomposition reaction that leads to biodegrade more compounds during AD. The balance was positive, suggesting that even without any optimization the energy used as electricity could be recovered from the increased methane production. It is worth noting that this kind of analysis have not been sufficiently studied so far. It is therefore important to understand how operational parameters can influence the pre-treatment and AD performances. The current study highlights that the mathematical optimization and energy analysis can make the whole process more convenient and feasible.


Author(s):  
O. Ornelas Dávila ◽  
L. Lacalle Bergeron ◽  
M.M. Dávila Jiménez ◽  
I. Sirés ◽  
E. Brillas ◽  
...  

2004 ◽  
Vol 49 (4) ◽  
pp. 649-656 ◽  
Author(s):  
Anna Maria Polcaro ◽  
Michele Mascia ◽  
Simonetta Palmas ◽  
Annalisa Vacca

2013 ◽  
Vol 1511 ◽  
Author(s):  
Jorge T. Matsushima ◽  
Andrea B. Couto ◽  
Neidenei G. Ferreira ◽  
Mauricio R. Baldan

ABSTRACTThis paper presents the study of the electrochemical deposition of Cu/Sn alloy nanoparticles on Boron Doped Diamond (BDD) films in order to improve their electrocatalytic activity and selectivity for application in nitrate electrochemical reduction. Cyclic voltammetry measurements evidenced the formation of Cu/Sn alloy electrodeposited on BDD electrode. The electrodeposited Cu/Sn can be better visualized by analyzing the dissolution process. By studying the dissolution peak separately, the dissolution peak of the Sn was obtained at a more positive potential, when compared with the dissolution peak of Cu. From the scanning electronic microscopy (SEM) analysis, the homogeneous distribution of the Cu/Sn alloys particles on BDD surface with grain size in nanometric scale was verified. From X-ray diffraction analysis, two Cu/Sn alloy phases (Cu41Sn11 and Cu10Sn3) were identified for the electrodeposits obtained at -0.5V and charge of 0.26 C. The electrocatalytic reduction of nitrate in 0.1 M Britton-Robinson (BR) buffer solution with pH 9 was analyzed. The BDD electrode modified with Cu/Sn alloy nanoparticles proved to potentiate the electrocatalytic reduction of nitrate.


2021 ◽  
pp. 161760
Author(s):  
Wanlin Yang ◽  
Jilin Tan ◽  
Yinhao Chen ◽  
Zhishen Li ◽  
Fangmu Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document