Sources and distribution of 241Am in the vicinity of a deep geologic repository

2018 ◽  
Vol 26 (3) ◽  
pp. 2328-2344 ◽  
Author(s):  
Punam Thakur ◽  
Anderson L. Ward
Keyword(s):  
MRS Advances ◽  
2019 ◽  
Vol 4 (17-18) ◽  
pp. 987-992
Author(s):  
François Diaz-Maurin ◽  
Rodney C. Ewing

ABSTRACTThe “safety case” approach has been developed to address the issue of evaluating the performance of a geologic repository in the face of the large uncertainty that results for evaluations that extend over hundreds of thousands of years. This paper reviews the concept of the safety case as it has been defined by the international community. We contrast the safety case approach with that presently used in the U.S. repository program. Especially, we focus on the role of uncertainty quantification. There are inconsistencies between the initial proposal to dealing with uncertainties in a safety case and current U.S. practice. The paper seeks to better define the safety case concept so that it can be usefully applied to the regulatory framework of the U.S. repository program.


1988 ◽  
Vol 127 ◽  
Author(s):  
M. G. Piepho ◽  
P. J. Turner ◽  
P. W. Reimus

ABSTRACTRadiolysis may significantly affect the long-term performance of nuclear waste packages in a geologic repository. Radiolysis of available moisture and air in an unsaturated or saturated environment will create transient species that can significantly change the pH and/or Eh of the available moisture. These changes can influence rates of containment corrosion, waste form dissolution, and radionuclide solubilities and transport.Many of the pertinent radiochemical reactions are not completely understood, and most of the associated rate constants are poorly characterized. To help identify the important radiochemical reactions, rate constants, species, and environmental conditions, an importance theory code, SWATS (Sensitivity With Adjoint Theory-Sparse version)-LOOPCHEM, has been developed for the radiolytic chemical kinetics model in the radiolysis code LOOPCHEM. The LOOPCHEM code calculates the concentrations of various species in a radiolytic field over time. The SWATS-LOOPCHEM code efficiently calculates: 1) the importance (relative to a defined response of interest) of each species concentration over time, 2) the sensitivity of each parameter of interest, and 3) the importance of each equation in the radiolysis model. The calculated results will be used to guide future experimental and modeling work for determining the importance of radiolysis on waste package performance. A demonstration (the importance of selected concentrations and the sensitivities of selected parameters) of the SWATS-LOOPCHEM code is provided for illustrative purposes, and no attempt is made at this time to interpret the results for waste package performance assessment purposes.


Author(s):  
C. John Mann

The nuclear waste programs of the United States and other countries have forced geologists to think specifically about probabilities of natural events, because the legal requirements to license repositories mandate a probabilistic standard (US EPA, 1985). In addition, uncertainties associated with these probabilities and the predicted performance of a geologic repository must be stated clearly in quantitative terms, as far as possible. Geoscientists rarely have thought in terms of stochasticity or clearly stated uncertainties for their results. All scientists are taught to acknowledge uncertainty and to specify the quantitative uncertainty in each derived or measured value, but this has seldom been done in geology. Thus, the nuclear waste disposal program is forcing us to do now what we should have been doing all along: acknowledge in quantitative terms what uncertainty is associated with each quantity that is employed, whether deterministically or probabilistically. Uncertainty is a simple concept ostensibly understood to mean that which is indeterminate, not certain, containing doubt, indefinite, problematical, not reliable, or dubious. However, uncertainty in a scientific sense demonstrates a complexity which often is unappreciated. Some types of uncertainty are difficult to handle, if they must be quantified, and a completely satisfactory treatment may be impossible. Initially, only uncertainty associated with measurement, was quantified. The Gaussian, or normal, probability density function (pdf) was recognized by Carl Friedrich Gauss as he studied errors in his measurements two centuries ago and developed a theory of errors still being used today. This was the only type of uncertainty that scientists acknowledged until Heisenberg stated his famous uncertainty principle in 1928. As information theory evolved during and after World War II, major advances were made in semantic uncertainty. Today, two major types of uncertainty are generally recognized (Klir and Folger, 1988): ambiguity or nonspecificity and vagueness or fuzziness. These can be subdivided further into seven types having various measures of uncertainty based on probability theory, set theory, fuzzy-set theory, and possibility theory.


2000 ◽  
Vol 6 (S2) ◽  
pp. 368-369
Author(s):  
N.L. Dietz ◽  
D.D Keiser

Argonne National Laboratory has developed an electrometallurgical treatment process for metallic spent nuclear fuel from the Experimental Breeder Reactor-II. This process stabilizes metallic sodium and separates usable uranium from fission products and transuranic elements that are contained in the fuel. The fission products and other waste constituents are placed into two waste forms: a ceramic waste form that contains the transuranic elements and active fission products such as Cs, Sr, I and the rare earth elements, and a metal alloy waste form composed primarily of stainless steel (SS), from claddings hulls and reactor hardware, and ∼15 wt.% Zr (from the U-Zr and U-Pu-Zr alloy fuels). The metal waste form (MWF) also contains noble metal fission products (Tc, Nb, Ru, Rh, Te, Ag, Pd, Mo) and minor amounts of actinides. Both waste forms are intended for eventual disposal in a geologic repository.


1985 ◽  
Vol 50 ◽  
Author(s):  
C. McCombie

The increased emphasis put upon disposal of HLW in recent years led to the growth of large numbers of research programmes in many countries. Many results of this research have flowed into projects developing and analysing geologic repository concepts; the basic feasibility of implementing safe disposal facilities is now generally accepted by the technical community (though not always by the public!)


Sign in / Sign up

Export Citation Format

Share Document