MoS2 nanosheets/silver nanoparticles anchored onto textile fabric as “dip catalyst” for synergistic p-nitrophenol hydrogenation

Author(s):  
Mohammed Majdoub ◽  
Abdallah Amedlous ◽  
Zakaria Anfar ◽  
Oussama Moussaoui
2012 ◽  
Vol 20 ◽  
pp. 69-76 ◽  
Author(s):  
Priscyla D. Marcato ◽  
Gerson Nakasato ◽  
Marcelo Brocchi ◽  
Patricia S. Melo ◽  
Stephany C. Huber ◽  
...  

The silver nanoparticles production (~8 nm) byFusarium oxysporumwas evidenced by the presence of the plasmon absorption band. These particles were stable by several months due to protein capping originated by the biogenic process as observed by transmission electron microscopy (TEM). The cytotoxicity of silver nanoparticles was assayed on V79 fibroblast cell line and were evaluated by tetrazolium reduction and neutral red uptake giving an IC50of 22 μM. Silver nanoparticles impregnation in textile fabrics was made through the padding method and their impregnation was confirmed by SEM-EDS. The antimicrobial tests on the textile fabric were done with different bacteria. These fabrics showed antimicrobial activity against all the studied bacteria. The antimicrobial activity was maintained until the 30ª washes showing the high adhesion of these nanoparticles on the fabric fibers probably due to interaction between protein capping and fibers. Then, it was demonstrated an efficient method of stable silver nanoparticles production and their high adhesion on the textile fabrics.


Sensor Review ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 360-366 ◽  
Author(s):  
Zahra Abadi ◽  
Vahid Mottaghitalab ◽  
Mansour Bidoki ◽  
Ali Benvidi

Purpose – The purpose of this paper is to present a sophisticated methodology for inkjet printing of silver nanoparticles (AgNPs) in the range of 80-200 nm on different flexible substrate. AgNPs was chemically deposited by ejection of silver nitrate and ascorbic acid solutions onto different substrates such as paper and textile fabrics. The fabricated pattern was used to employ as electrode for electrochemical sensors. Design/methodology/approach – The morphology of deposited AgNPs was characterized by means of scanning electron microscopy. Moreover, conductivity and electrochemical behavior were identified, respectively, using four probe and cyclic voltammetry techniques. Acquired image shows a well-defined shape and size for the deposited AgNP. Findings – The conductivity of the paper substrate after printing process reached 5.54 × 105 S/m. This printed electrode shows a sharp electrochemical response for early determination of glucose. The proposed electrode provides a new alternative to develop electrochemical sensors using AgNPs chemically deposited on paper and textile fabric surfaces.


2019 ◽  
Vol 107 (3) ◽  
pp. 305
Author(s):  
Mengmei Geng ◽  
Yuting Long ◽  
Tongqing Liu ◽  
Zijuan Du ◽  
Hong Li ◽  
...  

Surface-enhanced Raman Scattering (SERS) fiber probe provides abundant interaction area between light and materials, permits detection within limited space and is especially useful for remote or in situ detection. A silver decorated SERS fiber optic probe was prepared by hydrothermal method. This method manages to accomplish the growth of silver nanoparticles and its adherence on fiber optic tip within one step, simplifying the synthetic procedure. The effects of reaction time on phase composition, surface plasmon resonance property and morphology were investigated by X-ray diffraction analysis (XRD), ultraviolet-visible absorption spectrum (UV-VIS absorption spectrum) and scanning electron microscope (SEM). The results showed that when reaction time is prolonged from 4–8 hours at 180 °C, crystals size and size distribution of silver nanoparticles increase. Furthermore, the morphology, crystal size and distribution density of silver nanoparticles evolve along with reaction time. A growth mechanism based on two factors, equilibrium between nucleation and growth, and the existence of PVP, is hypothesized. The SERS fiber probe can detect rhodamin 6G (R6G) at the concentration of 10−6 M. This SERS fiber probe exhibits promising potential in organic dye and pesticide residue detection.


Author(s):  
S. Rezaei-Zarchi ◽  
M. Taghavi-Foumani ◽  
S. Razavi Sheshdeh ◽  
M. Negahdary ◽  
G. Rahimi

Sign in / Sign up

Export Citation Format

Share Document