scholarly journals Existing form and distribution of fluorine and phosphorus in phosphate rock acid-insoluble residue

Author(s):  
Rui Li ◽  
Weilong He ◽  
Jiangfei Duan ◽  
Shengxia Feng ◽  
Ziyu Zhu ◽  
...  
2021 ◽  
Author(s):  
Rui Li ◽  
Wei Long He ◽  
Jiangfei Duan ◽  
Shengxia Feng ◽  
Ziyu Zhu ◽  
...  

Abstract The phosphorus-sulfur two-step production process was developed in the wet-process phosphoric acid industry to solve phosphogypsum pollution. However, phosphate rock acid-insoluble residue is produced during this process as a new type of solid waste, which had a high potential for recycling. For process reasons, this type of residue still contains a certain amount of fluorine and phosphorus, which has a massive impact on the potential uses of phosphate rock acid-insoluble residue. Therefore, X-ray photoelectron spectroscopy, Raman, electron probe spectroscopy and scanning electron microscopy were used to examine the existing form and distribution of fluorine and phosphorus in phosphate rock acid-insoluble residue. The mass fraction of F and P2O5 were 9.407% and 11.862%, respectively. Fluorine existed mainly in the form of fluorite, fluorapatite and metal fluoride. Phosphorus existed mainly in the form of fluoroapatite, phosphate, hydrogen phosphate and dihydrogen phosphate. The total phosphate, hydrogen phosphate and dihydrogen phosphate contents were much higher than that of fluoroapatite, whereas the fluoroapatite content was higher than that of fluorite and metal fluoride. Fluorine and phosphorus were distributed in the form of agglomerates in the phosphate rock acid-insoluble residue. Fluorine and phosphorus were partially correlated, showing a weak relationship in the high phosphorus area.


Soil Research ◽  
1994 ◽  
Vol 32 (1) ◽  
pp. 95 ◽  
Author(s):  
HJ Di ◽  
LM Condron ◽  
AS Campbell ◽  
KM Goh ◽  
IS Cornforth

The agronomic effectiveness of partially acidulated phosphate rock (PAPR) fertilizers depends on the proportion of water soluble P present and the long-term release of P from the unacidulated residual phosphate rock (water-insoluble residue) in the soil environment. The relative reactivity of water-insoluble residues in a range of partially acidulated phosphate rock (PAPR) fertilizers was assessed according to chemical solubility, and was found to be lower than the corresponding original PRs. Two causes were identified for the reduced formic acid solubility of water-insoluble residues: (i) some preferential dissolution of more reactive apatite components (i.e. higher carbonate substituted apatite) during partial acidulation as indicated by reductions in the molar apatite C:P ratio of the residual PRs compared with the corresponding original PRs, and (ii) acid-insoluble metal (Fe-Al-Mg)phosphate and/or fluoride complexes formed on the surface of residual PRs during partial acidulation with commercial-grade phosphoric acid, which were partially soluble in alkaline ammonium citrate. These two mechanisms accounted for most of the solubility differences observed for 'medium' reactive PRs (Khouribga, Arad), compared with only half for more reactive PRs (North Carolina, Gafsa). The conclusion from this study is that partial acidulation may not be an ideal method for the manufacture of fertilizers containing fast and slow release (i.e. PR) components, particularly when highly reactive PRs such as North Carolina are used.


Author(s):  
P.W. Shannon

Increasing material, processing, and distribution costs have raised superphosphate prices to a point where many farms cannot support the costs of meeting maintenance phosphate requires men& Alternatives to superphosphate, particularly those that have lower processing costs and contain more P, may offer a solution to the problem provided they are agronomically as effective. Phosphate rock may indeed be such an alternative. Preliminary results from a series of five trials in Northland show that on soils of moderate P fertility, with low phosphate retention (PR) and high pH (5.9.6.0), initial pasture growth responses to rock phosphates are smaller than those from single or triple superphosphate. On one soil of higher PR and lower pH, the differences in yield between the rock-phosphates and the super. phosphates were smaller. Of the rock phosphates tested, Sechura and North Carolina (unground and ungranulated) tended to be more effective than ground and granulated Chatham Rise phosphorite. The effect on production of applying fertilisers once every three years, as opposed to annual applications is being investigated using triple superphosphate and Sechura phosphate rock. After two years, production levels appear largely unaffected by differences in application frequency. A comparison of locally-produced superphosphate with a reference standard showed that both performed similarly, indicating that the local product was of satisfactory quality.


1975 ◽  
Author(s):  
James Bachelder Cathcart
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document