Estimating acceptable exposure time for bioaerosols emission in a wastewater treatment plant by reverse quantitative microbial risk assessment based on various risk benchmarks

Author(s):  
Jun-ting Wu ◽  
Xiao-qing Song ◽  
Lan-wei Liang ◽  
Cheng Yan
2017 ◽  
Vol 18 (3) ◽  
pp. 910-925 ◽  
Author(s):  
Edmund Seto ◽  
Adam W. Olivieri ◽  
Richard E. Danielson

Abstract A quantitative microbial risk assessment (QMRA) was conducted to support renewal of the City of Vacaville wastewater discharge permit and seasonal (summer) filtration requirements. Influent and final disinfected effluent from the city's wastewater treatment plant, as well as 11 receiving water stations, were monitored for indicator organisms (i.e. total and fecal coliforms, Escherichia coli, Enterococcus, male-specific bacteriophage (MS2), and the Bacteroidales) and several pathogens (i.e. Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and Norovirus GI and GII). QMRA annualized risks of infection for selected pathogens enteric viruses, Giardia and Cryptosporidium. Estimated median annualized risk for recreational exposure in either disinfected secondary and/or filtered disinfected secondary effluent is on the order of 1.1 × 10−3 per person per year (pppy) for enteric viruses and would be roughly one order of magnitude lower if local receiving water dilution of the treatment plant effluent was taken into account. Estimated median annual risk for recreation exposure in disinfected secondary effluent is 1.8 × 10−3 pppy for Cryptosporidium and 1 log10 less with filtration during the summer months. The estimated median annual risk for landscape exposure (e.g. golfing) to secondary disinfected effluent is 7.6 × 10−7 pppy for enteric viruses. Estimated median annualized risk is 1.7 × 10−7 pppy for enteric viruses and 3.0 × 10−5 to 3.6 × 10−6 pppy for parasites for use of secondary disinfected effluent with irrigated agriculture. Estimated annualized risks for recreational exposure to the local receiving waters were approximately 10 to 1,000 times greater than direct recreational exposure to the final filtered and disinfected effluent. All risk estimates associated with exposure to final treated plant effluent (i.e. secondary filtered and disinfected) were close to or lower than the California level of acceptable annual risk of infection of 10−4 pppy for recreational exposure. Risk estimates provide further evidence to support the use of seasonal treatment limits requiring summer filtration for public health protection.


Author(s):  
Annalaura Carducci ◽  
Gabriele Donzelli ◽  
Lorenzo Cioni ◽  
Ileana Federigi ◽  
Roberto Lombardi ◽  
...  

Biological risk assessment in occupational settings currently is based on either qualitative or semiquantitative analysis. In this study, a quantitative microbial risk assessment (QMRA) has been applied to estimate the human adenovirus (HAdV) health risk due to bioaerosol exposure in a wastewater treatment plant (WWTP). A stochastic QMRA model was developed considering HAdV as the index pathogen, using its concentrations in different areas and published dose–response relationship for inhalation. A sensitivity analysis was employed to examine the impact of input parameters on health risk. The QMRA estimated a higher average risk in sewage influent and biological oxidation tanks (15.64% and 12.73% for an exposure of 3 min). Sensitivity analysis indicated HAdV concentration as a predominant factor in the estimated risk. QMRA results were used to calculate the exposure limits considering four different risk levels (one illness case per 100, 1.000, 10.000, and 100.000 workers): for 3 min exposures, we obtained 565, 170, 54, and 6 GC/m3 of HAdV. We also calculated the maximum time of exposure for each level for different areas. Our findings can be useful to better define the effectiveness of control measures, which would thus reduce the virus concentration or the exposure time.


2021 ◽  
Vol 754 ◽  
pp. 142163 ◽  
Author(s):  
Rafael Newton Zaneti ◽  
Viviane Girardi ◽  
Fernando Rosado Spilki ◽  
Kristina Mena ◽  
Ana Paula Campos Westphalen ◽  
...  

2018 ◽  
Vol 84 (6) ◽  
pp. e02093-17 ◽  
Author(s):  
Miguel F. Varela ◽  
Imen Ouardani ◽  
Tsuyoshi Kato ◽  
Syunsuke Kadoya ◽  
Mahjoub Aouni ◽  
...  

ABSTRACTSapovirus(SaV), from theCaliciviridaefamily, is a genus of enteric viruses that cause acute gastroenteritis. SaV is shed at high concentrations with feces into wastewater, which is usually discharged into aquatic environments or reused for irrigation without efficient treatments. This study analyzed the incidence of human SaV in four wastewater treatment plants from Tunisia during a period of 13 months (December 2009 to December 2010). Detection and quantification were carried out using reverse transcription-quantitative PCR (RT-qPCR) methods, obtaining a prevalence of 39.9% (87/218). Sixty-one positive samples were detected in untreated water and 26 positive samples in processed water. The Dekhila plant presented the highest contamination levels, with a 63.0% prevalence. A dominance of genotype I.2 was observed on 15 of the 24 positive samples that were genetically characterized. By a Bayesian estimation algorithm, the SaV density in wastewater was estimated using left-censored data sets. The mean value of log SaV concentration in untreated wastewater ranged between 2.7 and 4.5 logs. A virus removal efficiency of 0.2 log was calculated for the Dekhila plant as the log ratio posterior distributions between untreated and treated wastewater. Multiple quantitative values obtained in this study must be available in quantitative microbial risk assessment in Tunisia as parameter values reflecting local conditions.IMPORTANCEHuman sapovirus (SaV) is becoming more prevalent worldwide and organisms in this genus are recognized as emerging pathogens associated with human gastroenteritis. The present study describes novel findings on the prevalence, seasonality, and genotype distribution of SaV in Tunisia and Northern Africa. In addition, a statistical approximation using Bayesian estimation of the posterior predictive distribution (“left-censored” data) was employed to solve methodological problems related with the limit of quantification of the quantitative PCR (qPCR). This approach would be helpful for the future development of quantitative microbial risk assessment procedures for wastewater.


2004 ◽  
Vol 50 (2) ◽  
pp. 23-30 ◽  
Author(s):  
T. Westrell ◽  
C. Schönning ◽  
T.A. Stenström ◽  
N.J. Ashbolt

Hazard Analysis and Critical Control Points (HACCP) was applied for identifying and controlling exposure to pathogenic microorganisms encountered during normal sludge and wastewater handling at a 12,500 m3/d treatment plant utilising tertiary wastewater treatment and mesophilic sludge digestion. The hazardous scenarios considered were human exposure during treatment, handling, soil application and crop consumption, and exposure via water at the wetland-area and recreational swimming. A quantitative microbial risk assessment (QMRA), including rotavirus, adenovirus, haemorrhagic E. coli, Salmonella, Giardia and Cryptosporidium, was performed in order to prioritise pathogen hazards for control purposes. Human exposures were treated as individual risks but also related to the endemic situation in the general population. The highest individual health risk from a single exposure was via aerosols for workers at the belt press for sludge dewatering (virus infection risk = 1). The largest impact on the community would arise if children ingested sludge at the unprotected storage site, although in the worst-case situation the largest number of infections would arise through vegetables fertilised with sludge and eaten raw (not allowed in Sweden). Acceptable risk for various hazardous scenarios, treatment and/or reuse strategies could be tested in the model.


2020 ◽  
Vol 82 (8) ◽  
pp. 1547-1559
Author(s):  
Pengcheng Xu ◽  
Chongmiao Zhang ◽  
Xiao Mou ◽  
Xiaochang C. Wang

Abstract An investigation on bioaerosol in a wastewater treatment plant (WWTP) located in Xi'an, China, was conducted to understand the characteristics of bioaerosol released from wastewater and sludge treatment facilities because the bioaerosols may pose a threat to human health. Using the Andersen impactor sampler collection and colony-counting method, bioaerosol concentrations and size distributions were detected. The risk quotient method was used to evaluate the health risks associated with inhalation of bioaerosol for WWTP staff, based on the average daily dose rates of exposure. The health risk in relation to Legionella pneumophila was quantitatively calculated using quantitative microbial risk assessment (QMRA), based on the assumption of the percentage. The maximum concentration of airborne bacteria (3,767 ± 280 colony forming units (CFU)/m3) and fungi (8,775 ± 406 CFU/m3) occurred from the aerated grit chamber and sludge thickening house, respectively, which all exceeded 500 CFU/m3 as the acceptable guideline proposed by the American Conference of Governmental Industrial Hygienists. The particle size of airborne bacteria was mainly distributed in the first three stages (>3.3 µm), while that of airborne fungi was from the second to the fourth stage (2.1–7.0 µm). The hazard index exposure to bioaerosol for adult males and females by inhalation were higher than 1. The proportion of L. pneumophila should be strictly controlled below 10−8, based on the QMRA approach.


Sign in / Sign up

Export Citation Format

Share Document