QMRA (quantitative microbial risk assessment) and HACCP (hazard analysis and critical control points) for management of pathogens in wastewater and sewage sludge treatment and reuse

2004 ◽  
Vol 50 (2) ◽  
pp. 23-30 ◽  
Author(s):  
T. Westrell ◽  
C. Schönning ◽  
T.A. Stenström ◽  
N.J. Ashbolt

Hazard Analysis and Critical Control Points (HACCP) was applied for identifying and controlling exposure to pathogenic microorganisms encountered during normal sludge and wastewater handling at a 12,500 m3/d treatment plant utilising tertiary wastewater treatment and mesophilic sludge digestion. The hazardous scenarios considered were human exposure during treatment, handling, soil application and crop consumption, and exposure via water at the wetland-area and recreational swimming. A quantitative microbial risk assessment (QMRA), including rotavirus, adenovirus, haemorrhagic E. coli, Salmonella, Giardia and Cryptosporidium, was performed in order to prioritise pathogen hazards for control purposes. Human exposures were treated as individual risks but also related to the endemic situation in the general population. The highest individual health risk from a single exposure was via aerosols for workers at the belt press for sludge dewatering (virus infection risk = 1). The largest impact on the community would arise if children ingested sludge at the unprotected storage site, although in the worst-case situation the largest number of infections would arise through vegetables fertilised with sludge and eaten raw (not allowed in Sweden). Acceptable risk for various hazardous scenarios, treatment and/or reuse strategies could be tested in the model.

2006 ◽  
Vol 72 (5) ◽  
pp. 3284-3290 ◽  
Author(s):  
Andrew J. Hamilton ◽  
Frank Stagnitti ◽  
Robert Premier ◽  
Anne-Maree Boland ◽  
Glenn Hale

ABSTRACT Quantitative microbial risk assessment models for estimating the annual risk of enteric virus infection associated with consuming raw vegetables that have been overhead irrigated with nondisinfected secondary treated reclaimed water were constructed. We ran models for several different scenarios of crop type, viral concentration in effluent, and time since last irrigation event. The mean annual risk of infection was always less for cucumber than for broccoli, cabbage, or lettuce. Across the various crops, effluent qualities, and viral decay rates considered, the annual risk of infection ranged from 10−3 to 10−1 when reclaimed-water irrigation ceased 1 day before harvest and from 10−9 to 10−3 when it ceased 2 weeks before harvest. Two previously published decay coefficients were used to describe the die-off of viruses in the environment. For all combinations of crop type and effluent quality, application of the more aggressive decay coefficient led to annual risks of infection that satisfied the commonly propounded benchmark of ≤10−4, i.e., one infection or less per 10,000 people per year, providing that 14 days had elapsed since irrigation with reclaimed water. Conversely, this benchmark was not attained for any combination of crop and water quality when this withholding period was 1 day. The lower decay rate conferred markedly less protection, with broccoli and cucumber being the only crops satisfying the 10−4 standard for all water qualities after a 14-day withholding period. Sensitivity analyses on the models revealed that in nearly all cases, variation in the amount of produce consumed had the most significant effect on the total uncertainty surrounding the estimate of annual infection risk. The models presented cover what would generally be considered to be worst-case scenarios: overhead irrigation and consumption of vegetables raw. Practices such as subsurface, furrow, or drip irrigation and postharvest washing/disinfection and food preparation could substantially lower risks and need to be considered in future models, particularly for developed nations where these extra risk reduction measures are more common.


2016 ◽  
Vol 51 (2) ◽  
pp. 81-96 ◽  
Author(s):  
Mohamed A. Hamouda ◽  
William B. Anderson ◽  
Michele I. Van Dyke ◽  
Ian P. Douglas ◽  
Stéphanie D. McFadyen ◽  
...  

While traditional application of quantitative microbial risk assessment (QMRA) models usually stops at analyzing the microbial risk under typical operating conditions, this paper proposes the use of scenario-based risk assessment to predict the impact of potential challenges on the expected risk. This study used a QMRA model developed by Health Canada to compare 14 scenarios created to assess the increase in risk due to potential treatment failures and unexpected variations in water quality and operating parameters of a water treatment plant. Under regular operating conditions, the annual risk of illness was found to be substantially lower than the acceptable limit. Scenario-based QMRA was shown to be useful in demonstrating which hypothetical treatment failures would be the most critical, resulting in an increased risk of illness. The analysis demonstrated that scenarios incorporating considerable failure in treatment processes resulted in risk levels surpassing the acceptable limit. This reiterates the importance of robust treatment processes and the multi-barrier approach voiced in drinking water safety studies. Knowing the probability of failure, and the risk involved, allows designers and operators to make effective plans for response to treatment failures and/or recovery actions involving potential exposures. This ensures the appropriate allocation of financial and human resources.


2017 ◽  
Vol 18 (3) ◽  
pp. 910-925 ◽  
Author(s):  
Edmund Seto ◽  
Adam W. Olivieri ◽  
Richard E. Danielson

Abstract A quantitative microbial risk assessment (QMRA) was conducted to support renewal of the City of Vacaville wastewater discharge permit and seasonal (summer) filtration requirements. Influent and final disinfected effluent from the city's wastewater treatment plant, as well as 11 receiving water stations, were monitored for indicator organisms (i.e. total and fecal coliforms, Escherichia coli, Enterococcus, male-specific bacteriophage (MS2), and the Bacteroidales) and several pathogens (i.e. Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and Norovirus GI and GII). QMRA annualized risks of infection for selected pathogens enteric viruses, Giardia and Cryptosporidium. Estimated median annualized risk for recreational exposure in either disinfected secondary and/or filtered disinfected secondary effluent is on the order of 1.1 × 10−3 per person per year (pppy) for enteric viruses and would be roughly one order of magnitude lower if local receiving water dilution of the treatment plant effluent was taken into account. Estimated median annual risk for recreation exposure in disinfected secondary effluent is 1.8 × 10−3 pppy for Cryptosporidium and 1 log10 less with filtration during the summer months. The estimated median annual risk for landscape exposure (e.g. golfing) to secondary disinfected effluent is 7.6 × 10−7 pppy for enteric viruses. Estimated median annualized risk is 1.7 × 10−7 pppy for enteric viruses and 3.0 × 10−5 to 3.6 × 10−6 pppy for parasites for use of secondary disinfected effluent with irrigated agriculture. Estimated annualized risks for recreational exposure to the local receiving waters were approximately 10 to 1,000 times greater than direct recreational exposure to the final filtered and disinfected effluent. All risk estimates associated with exposure to final treated plant effluent (i.e. secondary filtered and disinfected) were close to or lower than the California level of acceptable annual risk of infection of 10−4 pppy for recreational exposure. Risk estimates provide further evidence to support the use of seasonal treatment limits requiring summer filtration for public health protection.


2016 ◽  
Vol 2 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Edmund Y. Seto ◽  
Jon Konnan ◽  
Adam W. Olivieri ◽  
Richard E. Danielson ◽  
Donald M. D. Gray

Quantitative Microbial Risk Assessment (QMRA) to assess health risk associated with increasing extreme rainfall events and the practice of wastewater blending.


LWT ◽  
2021 ◽  
Vol 144 ◽  
pp. 111201 ◽  
Author(s):  
Prez Verónica Emilse ◽  
Victoria Matías ◽  
Martínez Laura Cecilia ◽  
Giordano Miguel Oscar ◽  
Masachessi Gisela ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document