Local fruit wastes driven benthic microbial fuel cell: a sustainable approach to toxic metal removal and bioelectricity generation

Author(s):  
Asim Ali Yaqoob ◽  
Claudia Guerrero–Barajas ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Khalid Umar ◽  
Amira Suriaty Yaakop
2021 ◽  
Author(s):  
Asim Ali Yaqoob ◽  
Claudia Guerrero–Barajas ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Khalid Umar ◽  
Amira Suriaty Yaakop

Abstract The present work focused on the utilization of three local wastes i.e., rambutan (nephelium lappaceum), langsat (lansium parasiticum) and mango (mangifera indica) wastes as organic substrates in benthic microbial fuel cell (BMFC) to reduce the cadmium and lead concentrations from synthetic wastewater. Out of the three wastes, the mango waste promoted a maximum current density (87.71 mA/m2) along with 78 % and 80 % removal efficiencies for Cd2+ and Pb2+, respectively. The bacterial identification proved that Klebsiella pneumoniae, Enterobacter, and Citrobacter were responsible for metals removals and energy generation. Lastly, the BMFC mechanism, challenges and future recommendations are enclosed.


RSC Advances ◽  
2017 ◽  
Vol 7 (27) ◽  
pp. 16542-16552 ◽  
Author(s):  
Zhou Fang ◽  
Sichao Cheng ◽  
Hui Wang ◽  
Xian Cao ◽  
Xianning Li

Microbial fuel cells (MFCs) were embedded into constructed wetlands to form microbial fuel cell coupled constructed wetlands (CW-MFCs) and were used for simultaneous azo dye wastewater treatment and bioelectricity generation.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Md. Abdul Halim ◽  
Md. Owaleur Rahman ◽  
Mohammad Ibrahim ◽  
Rituparna Kundu ◽  
Biplob Kumar Biswas

Finding sustainable alternative energy resources and treating wastewater are the two most important issues that need to be solved. Microbial fuel cell (MFC) technology has demonstrated a tremendous potential in bioelectricity generation with wastewater treatment. Since wastewater can be used as a source of electrolyte for the MFC, the salient point of this study was to investigate the effect of pH on bioelectricity production using various biomass feed (wastewater and river water) as the anolyte in a dual-chambered MFC. Maximum extents of power density (1459.02 mW·m−2), current density (1288.9 mA·m−2), and voltage (1132 mV) were obtained at pH 8 by using Bhairab river water as a feedstock in the MFC. A substantial extent of chemical oxygen demand (COD) removal (94%) as well as coulombic efficiency (41.7%) was also achieved in the same chamber at pH 8. The overall performance of the MFC, in terms of bioelectricity generation, COD removal, and coulombic efficiency, indicates a plausible utilization of the MFC for wastewater treatment as well as bioelectricity production.


Author(s):  
Surajbhan Sevda ◽  
Pranab Jyoti Sarma ◽  
Kaustubha Mohanty ◽  
T. R. Sreekrishnan ◽  
Deepak Pant

2018 ◽  
Vol 94 (7) ◽  
pp. 2115-2122 ◽  
Author(s):  
Aswini Vellingiri ◽  
Young Eun Song ◽  
Ganapathiraman Munussami ◽  
Changman Kim ◽  
Chulhwan Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document