scholarly journals Interval association of remote sensing ecological index in China based on concept lattice

Author(s):  
Weihua Liao ◽  
Xin Nie ◽  
Zhiheng Zhang
2021 ◽  
Vol 10 (7) ◽  
pp. 475
Author(s):  
Ting Zhang ◽  
Ruiqing Yang ◽  
Yibo Yang ◽  
Long Li ◽  
Longqian Chen

The remote-sensing ecological index (RSEI), which is built with greenness, moisture, dryness, and heat, has become increasingly recognized for its use in urban eco-environment quality assessment. To improve the reliability of such assessment, we propose a new RSEI-based urban eco-environment quality assessment method where the impact of RSEI indicators on the eco-environment quality and the seasonal change of RSEI are examined and considered. The northern Chinese municipal city of Tianjin was selected as a case study to test the proposed method. Landsat images acquired in spring, summer, autumn, and winter were obtained and processed for three different years (1992, 2005, and 2018) for a multitemporal analysis. Results from the case study show that both the contributions of RSEI indicators to eco-environment quality and RSEI values vary with the season and that such seasonal variability should be considered by normalizing indicator measures differently and using more representative remote-sensing images, respectively. The assessed eco-environment quality of Tianjin was, overall, improving owing to governmental environmental protection measures, but the damage caused by rapid urban expansion and sea reclamation in the Binhai New Area still needs to be noted. It is concluded that our proposed urban eco-environment quality assessment method is viable and can provide a reliable assessment result that helps gain a more accurate understanding of the evolution of the urban eco-environment quality over seasons and years.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
王丽春 WANG Lichun ◽  
焦黎 JIAO Li ◽  
来风兵 LAI Fengbing ◽  
张乃明 ZHANG Naiming

2021 ◽  
Vol 10 (10) ◽  
pp. 688
Author(s):  
Yuxiang Yan ◽  
Xianwen Yu ◽  
Fengyang Long ◽  
Yanfeng Dong

The urban ecological environment is related to human health and is one of the most concerned issues nowadays. Hence, it is essential to detect and then evaluate the urban ecological environment. However, the conventional manual detection methods have many limitations, such as the high cost of labor, time, and capital. The aim of this paper is to evaluate the urban ecological environment more conveniently and reasonably, thus this paper proposed an ecological environment evaluation method based on remote sensing and a projection pursuit model. Firstly, a series of criteria for the urban ecological environment in Shanghai City are obtained through remote sensing technology. Then, the ecological environment is comprehensively evaluated using the projection pursuit model. Lastly, the ecological environment changes of Shanghai City are analyzed. The results show that the average remote sensing ecological index of Shanghai in 2020 increased obviously compared with that in 2016. In addition, Jinshan District, Songjiang District, and Qingpu District have higher ecological environment quality, while Hongkou District, Jingan District, and Huangpu District have lower ecological environment quality. In addition, the ecological environment of all districts has a significant positive spatial autocorrelation. These findings suggest that the ecological environment of Shanghai has improved overall in the past five years. In addition, Hongkou District, Jingan District, and Huangpu District should put more effort into improving the ecological environment in future, and the improvement of ecological environment should consider the impact of surrounding districts. Moreover, the proposed weight setting method is more reasonable, and the proposed evaluation method is convenient and practical.


Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 46
Author(s):  
Xincheng Zheng ◽  
Zeyao Zou ◽  
Chongmin Xu ◽  
Sen Lin ◽  
Zhilong Wu ◽  
...  

Although many prior efforts found that road networks significantly affect landscape fragmentation, the spatially heterogeneous effects of road networks on urban ecoenvironments remain poorly understood. A new remote-sensing-based ecological index (RSEI) is proposed to calculate the ecoenvironmental quality, and a local model (geographically weighted regression, GWR) was applied to explore the spatial variations in the relationship between kernel density of roads (KDR) and ecoenvironmental quality and understand the coupling mechanism of road networks and ecoenvironments. The average effect of KDR on the variables of normalized difference vegetation index (NDVI), land surface moisture (LSM), and RSEI was negative, while it was positively associated with the soil index (SI), normalized differential build-up and bare soil index (NDBSI), index-based built-up index (IBI), and land surface temperature (LST). This study shows that rivers and the landscape pattern along rivers exacerbate the impact of road networks on urban ecoenvironments. Moreover, spatial variation in the relationship between road network and ecoenvironment is mainly controlled by the relationship of the road network with vegetation and bare soil. This research can help in better understanding the diversified relationships between road networks and ecoenvironments and offers guidance for urban planners to avoid or mitigate the negative impacts of roads on urban ecoenvironments.


2019 ◽  
Author(s):  
Iswari Nur Hidayati ◽  
R Suharyadi ◽  
Projo Danoedoro

The phenomenon of urban ecology is very comprehensive, for example, rapid land-use changes, decrease in vegetation cover, dynamic urban climate, high population density, and lack of urban green space. Temporal resolution and spatial resolution of remote sensing data are fundamental requirements for spatial heterogeneity research. Remote sensing data is very effective and efficient for measuring, mapping, monitoring, and modeling spatial heterogeneity in urban areas. The advantage of remote sensing data is that it can be processed by visual and digital analysis, index transformation, image enhancement, and digital classification. Therefore, various information related to the quality of urban ecology can be processed quickly and accurately. This study integrates urban ecological, environmental data such as vegetation, built-up land, climate, and soil moisture based on spectral image response. The combination of various indices obtained from spatial data, thematic data, and spatial heterogeneity analysis can provide information related to urban ecological status. The results of this study can measure the pressure of environment caused by human activities such as urbanization, vegetation cover and agriculture land decreases, and urban micro-climate phenomenon. Using the same data source indicators, this method is comparable at different spatiotemporal scales and can avoid the variations or errors in weight definitions caused by individual characteristics. Land use changes can be seen from the results of the ecological index. Change is influenced by human behavior in the environment. In 2002, the ecological index illustrated that regions with low ecology still spread. Whereas in 2017, good and bad ecological indices are clustered.


Sign in / Sign up

Export Citation Format

Share Document