scholarly journals Assessing the Urban Eco-Environmental Quality by the Remote-Sensing Ecological Index: Application to Tianjin, North China

2021 ◽  
Vol 10 (7) ◽  
pp. 475
Author(s):  
Ting Zhang ◽  
Ruiqing Yang ◽  
Yibo Yang ◽  
Long Li ◽  
Longqian Chen

The remote-sensing ecological index (RSEI), which is built with greenness, moisture, dryness, and heat, has become increasingly recognized for its use in urban eco-environment quality assessment. To improve the reliability of such assessment, we propose a new RSEI-based urban eco-environment quality assessment method where the impact of RSEI indicators on the eco-environment quality and the seasonal change of RSEI are examined and considered. The northern Chinese municipal city of Tianjin was selected as a case study to test the proposed method. Landsat images acquired in spring, summer, autumn, and winter were obtained and processed for three different years (1992, 2005, and 2018) for a multitemporal analysis. Results from the case study show that both the contributions of RSEI indicators to eco-environment quality and RSEI values vary with the season and that such seasonal variability should be considered by normalizing indicator measures differently and using more representative remote-sensing images, respectively. The assessed eco-environment quality of Tianjin was, overall, improving owing to governmental environmental protection measures, but the damage caused by rapid urban expansion and sea reclamation in the Binhai New Area still needs to be noted. It is concluded that our proposed urban eco-environment quality assessment method is viable and can provide a reliable assessment result that helps gain a more accurate understanding of the evolution of the urban eco-environment quality over seasons and years.

2021 ◽  
Vol 10 (10) ◽  
pp. 688
Author(s):  
Yuxiang Yan ◽  
Xianwen Yu ◽  
Fengyang Long ◽  
Yanfeng Dong

The urban ecological environment is related to human health and is one of the most concerned issues nowadays. Hence, it is essential to detect and then evaluate the urban ecological environment. However, the conventional manual detection methods have many limitations, such as the high cost of labor, time, and capital. The aim of this paper is to evaluate the urban ecological environment more conveniently and reasonably, thus this paper proposed an ecological environment evaluation method based on remote sensing and a projection pursuit model. Firstly, a series of criteria for the urban ecological environment in Shanghai City are obtained through remote sensing technology. Then, the ecological environment is comprehensively evaluated using the projection pursuit model. Lastly, the ecological environment changes of Shanghai City are analyzed. The results show that the average remote sensing ecological index of Shanghai in 2020 increased obviously compared with that in 2016. In addition, Jinshan District, Songjiang District, and Qingpu District have higher ecological environment quality, while Hongkou District, Jingan District, and Huangpu District have lower ecological environment quality. In addition, the ecological environment of all districts has a significant positive spatial autocorrelation. These findings suggest that the ecological environment of Shanghai has improved overall in the past five years. In addition, Hongkou District, Jingan District, and Huangpu District should put more effort into improving the ecological environment in future, and the improvement of ecological environment should consider the impact of surrounding districts. Moreover, the proposed weight setting method is more reasonable, and the proposed evaluation method is convenient and practical.


2011 ◽  
Vol 11 (02) ◽  
pp. 235-249 ◽  
Author(s):  
FUZHENG YANG ◽  
SHUAI WAN

In this paper, a video quality assessment method based on two-level temporal pooling is proposed. By dividing a video sequence into groups of frames (GOFs) with variable lengths, a short-term temporal pooling is performed first at the eye fixation level to obtain the GOF quality. The determination of the GOF size is based on empirical observations from subjective tests that evaluate the duration of successive frames based on which steady quality judgment can be made by the human visual system. The video quality is further obtained by a second level of long-term temporal pooling using the GOF quality. The impact of strong impairment in part of the video on the cognitive system is incorporated in the proposed method for video quality assessment. Extensive experimental results have demonstrated the effectiveness of the proposed method for spatial-temporal distortion evaluation considering both regular and irregular frame loss.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3982
Author(s):  
Giacomo Lazzeri ◽  
William Frodella ◽  
Guglielmo Rossi ◽  
Sandro Moretti

Wildfires have affected global forests and the Mediterranean area with increasing recurrency and intensity in the last years, with climate change resulting in reduced precipitations and higher temperatures. To assess the impact of wildfires on the environment, burned area mapping has become progressively more relevant. Initially carried out via field sketches, the advent of satellite remote sensing opened new possibilities, reducing the cost uncertainty and safety of the previous techniques. In the present study an experimental methodology was adopted to test the potential of advanced remote sensing techniques such as multispectral Sentinel-2, PRISMA hyperspectral satellite, and UAV (unmanned aerial vehicle) remotely-sensed data for the multitemporal mapping of burned areas by soil–vegetation recovery analysis in two test sites in Portugal and Italy. In case study one, innovative multiplatform data classification was performed with the correlation between Sentinel-2 RBR (relativized burn ratio) fire severity classes and the scene hyperspectral signature, performed with a pixel-by-pixel comparison leading to a converging classification. In the adopted methodology, RBR burned area analysis and vegetation recovery was tested for accordance with biophysical vegetation parameters (LAI, fCover, and fAPAR). In case study two, a UAV-sensed NDVI index was adopted for high-resolution mapping data collection. At a large scale, the Sentinel-2 RBR index proved to be efficient for burned area analysis, from both fire severity and vegetation recovery phenomena perspectives. Despite the elapsed time between the event and the acquisition, PRISMA hyperspectral converging classification based on Sentinel-2 was able to detect and discriminate different spectral signatures corresponding to different fire severity classes. At a slope scale, the UAV platform proved to be an effective tool for mapping and characterizing the burned area, giving clear advantage with respect to filed GPS mapping. Results highlighted that UAV platforms, if equipped with a hyperspectral sensor and used in a synergistic approach with PRISMA, would create a useful tool for satellite acquired data scene classification, allowing for the acquisition of a ground truth.


2017 ◽  
Vol 18 (1) ◽  
Author(s):  
Zedong Wang ◽  
Jing Wang ◽  
Fei Wang ◽  
Chengcai Li ◽  
Zesong Fei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document