scholarly journals Endothelial deficiency of insulin-like growth factor-1 receptor (IGF1R) impairs neurovascular coupling responses in mice, mimicking aspects of the brain aging phenotype

GeroScience ◽  
2021 ◽  
Author(s):  
Stefano Tarantini ◽  
Ádám Nyúl-Tóth ◽  
Andriy Yabluchanskiy ◽  
Tamas Csipo ◽  
Peter Mukli ◽  
...  
2001 ◽  
Vol 37 (1-3) ◽  
pp. 320-334 ◽  
Author(s):  
Gloria Patricia Cardona-Gómez ◽  
Pablo Mendez ◽  
Lydia L DonCarlos ◽  
Iñigo Azcoitia ◽  
Luis M Garcia-Segura

2002 ◽  
Vol 83 (1-5) ◽  
pp. 211-217 ◽  
Author(s):  
Gloria Patricia Cardona-Gómez ◽  
Pablo Mendez ◽  
Lydia L. DonCarlos ◽  
Iñigo Azcoitia ◽  
Luis M. Garcia-Segura

2017 ◽  
Vol 114 (36) ◽  
pp. 9731-9736 ◽  
Author(s):  
Rigo Cintron-Colon ◽  
Manuel Sanchez-Alavez ◽  
William Nguyen ◽  
Simone Mori ◽  
Ruben Gonzalez-Rivera ◽  
...  

When food resources are scarce, endothermic animals can lower core body temperature (Tb). This phenomenon is believed to be part of an adaptive mechanism that may have evolved to conserve energy until more food becomes available. Here, we found in the mouse that the insulin-like growth factor 1 receptor (IGF-1R) controls this response in the central nervous system. Pharmacological or genetic inhibition of IGF-1R enhanced the reduction of temperature and of energy expenditure during calorie restriction. Full blockade of IGF-1R affected female and male mice similarly. In contrast, genetic IGF-1R dosage was effective only in females, where it also induced transient and estrus-specific hypothermia in animals fed ad libitum. These effects were regulated in the brain, as only central, not peripheral, pharmacological activation of IGF-1R prevented hypothermia during calorie restriction. Targeted IGF-1R knockout selectively in forebrain neurons revealed that IGF signaling also modulates calorie restriction-dependent Tbregulation in regions rostral of the canonical hypothalamic nuclei involved in controlling body temperature. In aggregate, these data identify central IGF-1R as a mediator of the integration of nutrient and temperature homeostasis. They also show that calorie restriction, IGF-1R signaling, and body temperature, three of the main regulators of metabolism, aging, and longevity, are components of the same pathway.


2009 ◽  
Vol 111 (1) ◽  
pp. 164-170 ◽  
Author(s):  
Lauren Fletcher ◽  
Sanjivan Kohli ◽  
Shane M. Sprague ◽  
Robert A. Scranton ◽  
Stuart A. Lipton ◽  
...  

Object Individually, the cytokines erythropoietin (EPO) and insulin-like growth factor–I (IGF-I) have both been shown to reduce neuronal damage significantly in rodent models of cerebral ischemia. The authors have previously shown that EPO and IGF-I, when administered together, provide acute and prolonged neuroprotection in cerebrocortical cultures against N-methyl-d-aspartate–induced apoptosis. The aim of this study was to determine whether intranasally applied EPO plus IGF-I can provide acute neuroprotection in an animal stroke model and to show that intranasal administration is more efficient at delivering EPO plus IGF-I to the brain when compared with intravenous, subcutaneous, or intraperitoneal administration. Methods The EPO and IGF-I were administered intranasally to mice that underwent transient middle cerebral artery occlusion (MCAO). Stroke volumes were measured after 1 hour of MCAO and 24 hours of reperfusion. To evaluate the long-term effects of this treatment, behavioral outcomes were assessed at 3, 30, 60, and 90 days following MCAO. Radiography and liquid scintillation were used to visualize and quantify the uptake of radiolabeled 125I-EPO and 125I–IGF-I into the mouse brain after intranasal, intravenous, subcutaneous, or intraperitoneal administration. Results Intranasal administration of EPO plus IGF-I reduced stroke volumes within 24 hours and improved neurological function in mice up to 90 days after MCAO. The 125I-EPO and 125I–IGF-I were found in the brain within 20 minutes after intranasal administration and accumulated within the injured areas of the brain. In addition, intranasal administration delivered significantly higher levels of the applied 125I-EPO and 125I–IGF-I to the brain compared with intravenous, subcutaneous, or intraperitoneal administration. Conclusions The data demonstrate that intranasal EPO plus IGF-I penetrates into the brain more efficiently than other drug delivery methods and could potentially provide a fast and efficient treatment to prevent chronic effects of stroke.


2000 ◽  
Vol 20 (8) ◽  
pp. 2926-2933 ◽  
Author(s):  
Eva Carro ◽  
Angel Nuñez ◽  
Svetlana Busiguina ◽  
Ignacio Torres-Aleman

Sign in / Sign up

Export Citation Format

Share Document