homologous protein
Recently Published Documents


TOTAL DOCUMENTS

620
(FIVE YEARS 128)

H-INDEX

58
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Ling Liu ◽  
Xingming Lyu ◽  
Zequn Pan ◽  
Qiaochu Wang ◽  
Wenhui Mu ◽  
...  

Sclerotinia sclerotiorum is a notorious phytopathogenic, Ascomycota fungus with a host range of over 600 plant species worldwide. This homothallic, Leotiomycetes species reproduces sexually through a multicellular apothecium which produces and releases ascospores. These ascospores serve as the primary inoculum source for disease initiation in the majority of S. sclerotiorum disease cycles. The regulation of apothecium development for this pathogen and other apothecium-producing fungi remains largely unknown. Here, we report that a C2H2 transcription factor SsZFH1 (zinc finger homologous protein) is necessary for the proper development and maturation of sclerotia and apothecia in S. sclerotiorum and is required for the normal growth rate of hyphae. Furthermore, ΔSszfh1 strains exhibit decreased reactive oxygen species (ROS) accumulation in hyphae, increased melanin deposition and enhanced tolerance to H2O2 in the process of vegetative growth and sclerotia formation. Infection assays on common bean leaves, with thin cuticles, and soybean and tomato leaves, with thick cuticles, suggest that the deletion of Sszfh1 slows the mycelial growth rate, which in turn affect the expansion of leaf lesions. Collectively, our results provide novel insights into the fungal factor mediating maturation of apothecia with additional effects on hyphae and sclerotia development.


2022 ◽  
Author(s):  
Cheng-Wei Lu ◽  
Chen-Yung Lin ◽  
Pei-Wen Hsieh ◽  
Kuan-Ming Chiu ◽  
Ming-Yi Lee ◽  
...  

Abstract The neurotransmitter glutamate plays an essential role in excitatory neurotransmission; however, excessive amounts of glutamate lead to excitotoxicity, which is the most common pathogenic feature of numerous brain disorders. This study aimed to investigate the role of butyl 2-[2-(2-fluorophenyl)acetamido]benzoate (HFP034), a synthesized anthranilate derivative, in the central glutamatergic system. We used rat cerebrocortical synaptosomes to examine the effect of HFP034 on glutamate release. In addition, we used a rat model of kainic acid (KA)-induced glutamate excitotoxicity to evaluate the neuroprotective potential of HFP034. We showed that HFP034 inhibits 4-aminopyridine (4-AP)-induced glutamate release from synaptosomes, and this inhibition was absent in the absence of extracellular calcium. HFP034-mediated inhibition of glutamate release was associated with decreased 4-AP-evoked Ca2+ level elevation and had no effect on synaptosomal membrane potential. The inhibitory effect of HFP034 on evoked glutamate release was suppressed by blocking P/Q-type Ca2+ channels and protein kinase C (PKC). Furthermore, HFP034 inhibited the phosphorylation of PKC and its substrate, myristoylated alanine‐rich C kinase substrate (MARCKS), in synaptosomes. We also observed that HFP034 pretreatment reduced neuronal death, glutamate concentration, glial activation, and the levels of endoplasmic reticulum stress-related proteins, calpains, glucose-regulated protein 78 (GRP 78), C/EBP homologous protein (CHOP), and caspase-12 in the hippocampus of KA-injected rats. We conclude that HFP034 is a neuroprotective agent that prevents glutamate excitotoxicity, and we suggest that this effect involves inhibition of presynaptic glutamate release through the suppression of P/Q‐type Ca2+ channels and PKC/MARCKS pathways.


2021 ◽  
Author(s):  
Ahlam Mohamed Alhusaini ◽  
Laila M. Fadda ◽  
Huda Alsharafi ◽  
Amjad Fahad Alshamary ◽  
Iman H. Hasan

Lead acetate (lead ac.) is a widespread ecological toxicant that can cause marked neurotoxicity and decline in brain functions. This study aimed to evaluate the possible neuroprotective role of L-ascorbic (ASCR) and curcumin (CRCM) alone or together against lead ac.-induced neurotoxicity. Rats were injected with lead ac. then treated orally with ASCR and CRCM alone or in combination for seven days. Lead ac. caused elevation in brain tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6), caspase-3, and malondialdehyde (MDA) levels, while superoxide dismutase (SOD), reduced glutathione (GSH) as well as the expression of brain-derived neurotrophic factor (BDNF), cAMP response element-binding (CREB) and Beclin1 were down-regulated. Expressions of C/EBP homologous protein (CHOP) and mammalian Target of rapamycin kinase (mTOR) were upregulated in brain tissues matched with the control group. Histopathological examination supported the previously mentioned parameters, the administration of the antioxidants in question modulated all the altered previous parameters. The combination regimen achieved the superlative results in the antagonizing lead ac.-induced neurotoxicity via its antioxidant and anti-apoptotic activities.


2021 ◽  
Author(s):  
Tzu-Yu Lin ◽  
Cheng-Wei Lu ◽  
Pei-Wen Hsieh ◽  
Kuan-Ming Chiu ◽  
Ming-Yi Lee ◽  
...  

Abstract The neurotransmitter glutamate plays an essential role in excitatory neurotransmission; however, excessive glutamate leads to excitotoxicity, which is the most common pathogenic feature of numerous brain disorders. This study aimed to investigate the role of butyl 2-[2-(2-fluorophenyl)acetamido]benzoate (HFP034), a synthesized anthranilate derivative, in the central glutamatergic system. We used rat cerebrocortical synaptosomes to examine the effect of HFP034 on glutamate release. In addition, we used a rat model of kainic acid (KA)-induced glutamate excitotoxicity to evaluate the neuroprotective potential of HFP034. We showed that HFP034 inhibited 4-aminopyridine (4-AP)-induced glutamate release from the synaptosomes, and this inhibition was abolished in the absence of extracellular calcium. HFP034-mediated inhibition of glutamate release was associated with a decreased 4-AP-evoked Ca2+ level elevation, and had no effect on synaptosomal membrane potential. The inhibitory effect of HFP034 on evoked glutamate release was suppressed by blocking P/Q-type Ca2+ channels and protein kinase C (PKC). Furthermore, HFP034 inhibited the phosphorylation of PKC and its substrate, myristoylated alanine-rich C kinase substrate (MARCKS), in the synaptosomes. We also observed that HFP034 pretreatment reduced neuronal death, glutamate concentration, glial activation, and the levels of endoplasmic reticulum stress-related proteins, calpains, glucose-regulated protein 78 (GRP 78), C/EBP homologous protein (CHOP), and caspase-12 in the hippocampus of KA-injected rats. We concluded that HFP034 is a neuroprotective agent that prevents glutamate excitotoxicity, and we suggest that this effect involves the inhibition of presynaptic glutamate release by suppressing P/Q‐type Ca2+ channels and PKC/MARCKS pathways.


Inflammation ◽  
2021 ◽  
Author(s):  
Yan Cao ◽  
Maiying Fan ◽  
Yanfang Pei ◽  
Lei Su ◽  
Weiwei Xiao ◽  
...  

Abstract The intestine is one of the main target organs involved in the pathological process of heatstroke. CCAAT/enhancer-binding protein homologous protein (CHOP) is involved in endoplasmic reticulum (ER) stress-induced apoptosis. This study aimed to explore the role of CHOP in heatstroke-induced intestinal injury and potential therapy. An in vitro heat stress (HS) model using Caco-2 cells was employed. We observed the role of CHOP in apoptosis-mediated intestinal epithelial cell injury secondary to HS by evaluating cell viability, lactate dehydrogenase release, apoptosis levels, and GRP78, PERK, ATF4, CHOP, Bcl-2, and BAX mRNA and protein expression. To further study the role of CHOP in HS-induced intestinal barrier dysfunction, we assessed transepithelial electrical resistance, paracellular tracer flux, ultrastructure of tight junctions, and protein expression of ZO-1 and occludin. Male wild-type mice and CHOP knockout mice were used for in vivo experiments. We evaluated serum d-lactate and diamine oxidase levels, histopathological changes, intestinal ultrastructure, and ZO-1 and occludin protein expression. HS activated the PERK-CHOP pathway and promoted apoptosis by upregulating BAX and downregulating Bcl-2; these effects were prevented by CHOP silencing. Intestinal epithelial barrier function was disrupted by HS in vitro and in vivo. CHOP silencing prevented intestinal barrier dysfunction in Caco-2 cells, whereas CHOP knockout mice exhibited decreased intestinal mucosal injury. The ER stress inhibitor 4-phenylbutyrate (4-PBA) prevented HS-induced intestinal injury in vitro and in vivo. This study indicated that CHOP deficiency attenuates heatstroke-induced intestinal injury and may contribute to the identification of a novel therapy against heatstroke associated with the ER stress pathway.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lars Gabriel ◽  
Katharina J. Hoff ◽  
Tomáš Brůna ◽  
Mark Borodovsky ◽  
Mario Stanke

Abstract Background BRAKER is a suite of automatic pipelines, BRAKER1 and BRAKER2, for the accurate annotation of protein-coding genes in eukaryotic genomes. Each pipeline trains statistical models of protein-coding genes based on provided evidence and, then predicts protein-coding genes in genomic sequences using both the extrinsic evidence and statistical models. For training and prediction, BRAKER1 and BRAKER2 incorporate complementary extrinsic evidence: BRAKER1 uses only RNA-seq data while BRAKER2 uses only a database of cross-species proteins. The BRAKER suite has so far not been able to reliably exceed the accuracy of BRAKER1 and BRAKER2 when incorporating both types of evidence simultaneously. Currently, for a novel genome project where both RNA-seq and protein data are available, the best option is to run both pipelines independently, and to pick one, likely better output. Therefore, one or another type of the extrinsic evidence would remain unexploited. Results We present TSEBRA, a software that selects gene predictions (transcripts) from the sets generated by BRAKER1 and BRAKER2. TSEBRA uses a set of rules to compare scores of overlapping transcripts based on their support by RNA-seq and homologous protein evidence. We show in computational experiments on genomes of 11 species that TSEBRA achieves higher accuracy than either BRAKER1 or BRAKER2 running alone and that TSEBRA compares favorably with the combiner tool EVidenceModeler. Conclusion TSEBRA is an easy-to-use and fast software tool. It can be used in concert with the BRAKER pipeline to generate a gene prediction set supported by both RNA-seq and homologous protein evidence.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 826
Author(s):  
Dan Li ◽  
Zhi Li ◽  
Tianchang Zhang ◽  
Bo Peng ◽  
Yan Zhang ◽  
...  

It is important to note that 2-Amino-3-methylimidazole[4,5-f]quinoline (IQ) is one of the most common heterocyclic amines (HCAs), which is a class of mutagenic/carcinogenic harmful compounds mainly found in high-protein thermal processed foods and contaminated environments. However, the pre-carcinogenic toxicity of IQ to the liver and its mechanism are poorly understood, further research is needed. In light of this, we exposed zebrafish to IQ (0, 8, 80, and 800 ng/mL) for 35 days, followed by comprehensive experimental studies. Histopathological and ultrastructural analysis showed that hepatocytes were damaged. TUNEL results showed that IQ induced apoptosis of liver cells, the expression of apoptosis factor gene was significantly increased, and the expression of Bcl-2 protein was significantly decreased. In addition, upregulated expression of the 78-kDa glucose-regulated protein (GRP78) and C/EBP homologous protein (CHOP) and endoplasmic reticulum stress (ERS)-related factors transcription levels were elevated obviously, suggesting that IQ induced ERS. Decreased protein expression of autophagy-related 5 (Atg5)-Atg12, Beclin1, and LC3-II, increased protein expression of p62, and autophagy-related factors transcription levels were significantly decreased, suggesting that IQ inhibited autophagy. Overall, our research showed that the potential harm of IQ to the liver before the occurrence of liver cancer was related to ERS and its mediated autophagy and apoptosis pathways.


Sign in / Sign up

Export Citation Format

Share Document