scholarly journals Spatial and temporal variability of urban soil water dynamics observed by a soil monitoring network

2016 ◽  
Vol 16 (11) ◽  
pp. 2523-2537 ◽  
Author(s):  
Sarah Wiesner ◽  
Alexander Gröngröft ◽  
Felix Ament ◽  
Annette Eschenbach
2021 ◽  
Author(s):  
Edoardo Martini ◽  
Simon Kögler ◽  
Manuel Kreck ◽  
Kurt Roth ◽  
Ulrike Werban ◽  
...  

Abstract. The Schäfertal hillslope site is part of the TERENO Harz/Central German Lowland Observatory and its soil water dynamics is being monitored intensively as part of an integrated, long-term, multi-scale and multi-temporal research framework linking hydrological, pedological, atmospheric and biodiversity-related research to investigate the influences of climate and land use change on the terrestrial system. Here, a new soil monitoring network, indicated as STH-net, has been recently implemented to provide high-resolution data about the most relevant hydrological variables and local soil properties. The monitoring network is spatially optimized, based on previous knowledge from soil mapping and soil moisture monitoring, in order to capture the spatial variability of soil properties and soil water dynamics along a catena across the site as well as in depth. The STH-net comprises eight stations instrumented with time-domain reflectometry (TDR) probes, soil temperature probes and piezometers. Furthermore, a weather station provides data about the meteorological variables. A detailed soil characterization exists for locations where the TDR probes are installed. All data are measured at a 10-minutes interval since January 1st, 2019. The STH-net is intended to provide scientists with high-quality data needed for developing and testing modelling approaches in the context of vadose-zone hydrology at spatial scales ranging from the pedon to the hillslope. The data are available from the EUDAT portal (https://b2share.eudat.eu/records/e2a2135bb1634a97abcedf8a461c0909 ) (Martini et al., 2020).


2021 ◽  
Vol 13 (6) ◽  
pp. 2529-2539
Author(s):  
Edoardo Martini ◽  
Matteo Bauckholt ◽  
Simon Kögler ◽  
Manuel Kreck ◽  
Kurt Roth ◽  
...  

Abstract. The Schäfertal Hillslope site is part of the TERENO Harz/Central German Lowland Observatory, and its soil water dynamics are being monitored intensively as part of an integrated, long-term, multi-scale, and multi-temporal research framework linking hydrological, pedological, atmospheric, and biodiversity-related research to investigate the influences of climate and land use change on the terrestrial system. Here, a new soil monitoring network, indicated as STH-net, has been recently implemented to provide high-resolution data about the most relevant hydrological variables and local soil properties. The monitoring network is spatially optimized, based on previous knowledge from soil mapping and soil moisture monitoring, in order to capture the spatial variability in soil properties and soil water dynamics along a catena across the site as well as in depth. The STH-net comprises eight stations instrumented with time-domain reflectometry (TDR) probes, soil temperature probes, and monitoring wells. Furthermore, a weather station provides data about the meteorological variables. A detailed soil characterization exists for locations where the TDR probes are installed. All data have been measured at a 10 min interval since 1 January 2019. The STH-net is intended to provide scientists with data needed for developing and testing modelling approaches in the context of vadose-zone hydrology at spatial scales ranging from the pedon to the hillslope. The data are available from the EUDAT portal (https://doi.org/10.23728/b2share.82818db7be054f5eb921d386a0bcaa74, Martini et al., 2020).


2021 ◽  
pp. e00395
Author(s):  
Achamyeleh G. Mengistu ◽  
Weldemichael A. Tesfuhuney ◽  
Yali E. Woyessa ◽  
Leon D. van Rensburg

2021 ◽  
Author(s):  
Matteo Longo ◽  
Curtis Dinnen Jones ◽  
Roberto César Izaurralde ◽  
Miguel L. Cabrera ◽  
Nicola Dal Ferro ◽  
...  

2020 ◽  
Vol 83 ◽  
pp. 371-385 ◽  
Author(s):  
Ángel del Vigo ◽  
Sergio Zubelzu ◽  
Luis Juana

2013 ◽  
Vol 1 (No. 3) ◽  
pp. 85-98
Author(s):  
Dohnal Michal ◽  
Dušek Jaromír ◽  
Vogel Tomáš ◽  
Herza Jiří

This paper focuses on numerical modelling of soil water movement in response to the root water uptake that is driven by transpiration. The flow of water in a lysimeter, installed at a grass covered hillslope site in a small headwater catchment, is analysed by means of numerical simulation. The lysimeter system provides a well defined control volume with boundary fluxes measured and soil water pressure continuously monitored. The evapotranspiration intensity is estimated by the Penman-Monteith method and compared with the measured lysimeter soil water loss and the simulated root water uptake. Variably saturated flow of water in the lysimeter is simulated using one-dimensional dual-permeability model based on the numerical solution of the Richards’ equation. The availability of water for the root water uptake is determined by the evaluation of the plant water stress function, integrated in the soil water flow model. Different lower boundary conditions are tested to compare the soil water dynamics inside and outside the lysimeter. Special attention is paid to the possible influence of the preferential flow effects on the lysimeter soil water balance. The adopted modelling approach provides a useful and flexible framework for numerical analysis of soil water dynamics in response to the plant transpiration.


Geoderma ◽  
2017 ◽  
Vol 285 ◽  
pp. 76-93 ◽  
Author(s):  
Jingyi Huang ◽  
Alex B. McBratney ◽  
Budiman Minasny ◽  
John Triantafilis

Soil Science ◽  
1977 ◽  
Vol 123 (1) ◽  
pp. 54-62 ◽  
Author(s):  
D. HILLEL ◽  
H. TALPAZ

Sign in / Sign up

Export Citation Format

Share Document