scholarly journals Analysis of Soil Water Response to Grass Transpiration

2013 ◽  
Vol 1 (No. 3) ◽  
pp. 85-98
Author(s):  
Dohnal Michal ◽  
Dušek Jaromír ◽  
Vogel Tomáš ◽  
Herza Jiří

This paper focuses on numerical modelling of soil water movement in response to the root water uptake that is driven by transpiration. The flow of water in a lysimeter, installed at a grass covered hillslope site in a small headwater catchment, is analysed by means of numerical simulation. The lysimeter system provides a well defined control volume with boundary fluxes measured and soil water pressure continuously monitored. The evapotranspiration intensity is estimated by the Penman-Monteith method and compared with the measured lysimeter soil water loss and the simulated root water uptake. Variably saturated flow of water in the lysimeter is simulated using one-dimensional dual-permeability model based on the numerical solution of the Richards’ equation. The availability of water for the root water uptake is determined by the evaluation of the plant water stress function, integrated in the soil water flow model. Different lower boundary conditions are tested to compare the soil water dynamics inside and outside the lysimeter. Special attention is paid to the possible influence of the preferential flow effects on the lysimeter soil water balance. The adopted modelling approach provides a useful and flexible framework for numerical analysis of soil water dynamics in response to the plant transpiration.

Biologia ◽  
2007 ◽  
Vol 62 (5) ◽  
Author(s):  
František Doležal ◽  
David Zumr ◽  
Josef Vacek ◽  
Josef Zavadil ◽  
Adriano Battilani ◽  
...  

AbstractWater movement and uptake by roots in a drip-irrigated potato field was studied by combining field experiments, outputs of numerical simulations and summary results of an EU project (www.fertorganic.org). Detailed measurements of soil suction and weather conditions in the Bohemo-Moravian highland made it possible to derive improved estimates of some parameters for the dual permeability model S1D_DUAL. A reasonably good agreement between the measured and the estimated soil hydraulic properties was obtained. The measured root zone depths were near to those obtained by inverse simulation with S1D _DUAL and to a boundary curve approximation. The measured and S1D _DUAL-simulated soil water pressure heads were comparable with those achieved by simulations with the Daisy model. During dry spells, the measured pressure heads tended to be higher than the simulated ones. In general, the former oscillated between the simulated values for soil matrix and those for the preferential flow (PF) domain. Irrigation facilitated deep seepage after rain events. We conclude that several parallel soil moisture sensors are needed for adequate irrigation control. The sensors cannot detect the time when the irrigation should be stopped.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1033 ◽  
Author(s):  
Xianghong Guo ◽  
Xihuan Sun ◽  
Juanjuan Ma ◽  
Tao Lei ◽  
Lijian Zheng ◽  
...  

Soil water content (SWC) distribution plays an important role in root water uptake (RWU) and crop yield. Reasonable deep irrigation can increase the yield of winter wheat. The soil water movement model of winter wheat was established by considering the root water uptake and the different soil depths of irrigation and using the source term of the soil water movement equation to simulate irrigation at different soil depths. For model verification, experiments on three treatments of winter wheat growth were conducted at irrigation soil depths of 0% (T1), 40% (T2), and 70% (T3) of the distribution depth of the winter wheat root system. The SWC calculated by the model is in accordance with the dynamic change trend of the measured SWC. The maximum absolute error of the model was 0.022 cm3/cm3. The maximum average relative error was 7.95%. The maximum root mean square error was 0.28 cm3/cm3. Therefore, the model has a high simulation accuracy and can be used to simulate the distribution and dynamic changes of SWC of winter wheat in irrigation at different soil depths. The experimental data showed that irrigation soil depth has a significant effect on the root distribution of winter wheat (p < 0.05), and deep irrigation can reduce the root length density (RLD) in the upper soil layers and increase the RLD in the deeper soil layers. The dynamic simulation of RWU and SWC showed that deep irrigation can increase the SWC and RWU in deep soil and decrease the SWC and RWU in upper soil. Consequently, deep irrigation can increase the transpiration of winter wheat, reduce evaporation and evapotranspiration, and increase the yield of winter wheat.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 43
Author(s):  
Xuejun Dong

The need for improved crop water use efficiency calls for flexible modeling platforms to implement new ideas in plant root uptake and its regulation mechanisms. This paper documents the details of modifying a soil infiltration and redistribution model to include (a) dynamic root growth, (b) non-uniform root distribution and water uptake, (c) the effect of water stress on plant water uptake, and (d) soil evaporation. The paper also demonstrates strategies of using the modified model to simulate soil water dynamics and plant transpiration considering different sensitivity of plants to soil dryness and different mechanisms of root water uptake. In particular, the flexibility of simulating various degrees of compensated uptake (whereby plants tend to maintain potential transpiration under mild water stress) is emphasized. The paper also describes how to estimate unknown root distribution and rooting depth parameters by the use of a simulation-based searching method. The full documentation of the computer code will allow further applications and new development.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 242
Author(s):  
Kang Du ◽  
Beiying Zhang ◽  
Linjuan Li

Exploring soil water dynamics under different land use types is important for water resource management and vegetation restoration in the Loess Plateau. In this study, we investigated the hydrogen and oxygen isotopic compositions of soil water from four different land use types to explore the mechanism of soil water movement and transformation and analyse the influence of land use. The results show that the range of stable isotopes (δD and δ18O) in soil water was smaller than that in precipitation. Values for δD and δ18O in soil water showed relatively similar temporal variation, heavy isotopes were enriched in the soil water in July and depleted in October. Stable isotope values in shallow (<100 cm depth) soil water and deep (>200 cm depth) soil water were low. The δD and δ18O values in woodlands decreased gradually with increasing depth. Across the four land use types, the maximum variation in δD and δ18O was in the shallow depth of the soil profile. Groundwater was recharged mainly from precipitation and then from soil water. The ratio of groundwater recharge by soil water under different land use types followed this rank order: woodland (35.70%) > grassland (31.14%) > shrubland (29.47%) > cropland (29.18%). Matrix flow and preferential flow coexisted during infiltration, and the occurrence of preferential flow was related to the land use type. The main reason for the variation in isotopic composition in soil water is the difference in soil evaporation, which is influenced by different vegetation cover. Owing to the difference in soil evaporation and fractionation, precipitation on cropland, shrubland, and grassland can recharge more soil water than on woodland.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1662
Author(s):  
Sheng-Lun Li ◽  
Wei-Li Liang

Tensiometer-coiled time domain reflectometry (T-TDR) probes have been developed in previous studies, but have not been applied in the field. In this study, we applied T-TDR probes to the simultaneous monitoring of soil water content (θ) and soil water potential (ψ) on a profile beneath a tree in a forest stand, and analyzed the temporal and spatial variations in soil water dynamics in a root-containing environment. The results showed different features in the relationships between the mean and standard deviation of spatial θ and ψ, which exhibited convex-upward shapes and negative curvilinear shapes, respectively. High spatial variability was observed at intermediate values of θ and small values of ψ. Matrix flow and preferential flow accounted for 75% and 25% of the area beneath the tree. Although the infiltration processes were dominated by matrix flow, preferential flow acting for a short time could cause an average θ or ψ to reach their maximum values at all of the locations. Preferential flow primarily occurred at a “hot spot” around a coarse root. Small changes in θ and ψ were generally observed at a “cold spot” beneath a lateral root. Integrated information from multiple sources of θ and ψ could help to evaluate soil water dynamics when one exhibited large spatial variation during the wetting or drying processes, and greatly help to improve the accuracy for detecting the presence of preferential flow in a short measurement period.


Sign in / Sign up

Export Citation Format

Share Document