Fluctuating water level effects on soil greenhouse gas emissions of returning farmland to wetland

2020 ◽  
Vol 20 (11) ◽  
pp. 3857-3866
Author(s):  
Tianbao Zhang ◽  
Xiaohui Liu ◽  
Yu An
2018 ◽  
Vol 17 (1) ◽  
pp. 170152 ◽  
Author(s):  
Jihuan Wang ◽  
Heye R. Bogena ◽  
Harry Vereecken ◽  
Nicolas Brüggemann

Author(s):  
Anne Marieke Motelica-Wagenaar ◽  
Jos Beemster

Abstract. Soil subsidence is one of the major issues in the management area of the water authority Amstel, Gooi and Vecht, including emissions of greenhouse gases. This paper describes four different methods to calculate these emissions in agricultural peat meadows, based on (1) the mean lowest groundwater level, (2) the mean groundwater level, (3) the subsidence rates and (4) general numbers. The emissions were calculated in two polders (about 2600 ha peat meadow), these were comparable for all methods, ranging from 42 up to 50 kton CO2-eq yr−1 (based on data of 2015), which is about 14.5 up to 19 t CO2-eq ha−1 yr−1. Besides, the greenhouse gas emissions were compared for different policy scenario's in one polder subunit (283 ha): (1) standard policy (lowering surface water level at the same rate as soil subsidence taking place), (2) passive rewetting (surface water level fixation), (3) subsurface irrigation by submerged drains, and (4) a maximum surface water level decrease of 6 mm yr−1. Comparing the four policy scenario's in one polder subunit, greenhouse gas emissions were lowest in case of subsurface irrigation, decreasing greenhouse gas emissions by about 35 %–50 % in this polder compared to standard policy, meaning a decrease of about 5.5–9.3 t CO2-eq ha−1 yr−1. This represents a value of about 550–930 EUR ha−1 yr−1 (at a price of EUR 100 per ton CO2-eq). The scenario passive rewetting leads to a decrease of about 12 %–21 %, or 2–3 t CO2-eq ha−1 yr−1 compared to standard policy. The estimation of the decrease in GHG emissions depends on the assumptions made. In this study it was assumed that subsurface irrigation halves soil subsidence. The water board will use the described procedures to estimate greenhouse gas emissions in the future to support water level management in areas with peat soils.


2009 ◽  
pp. 107-120 ◽  
Author(s):  
I. Bashmakov

On the eve of the worldwide negotiations of a new climate agreement in December 2009 in Copenhagen it is important to clearly understand what Russia can do to mitigate energy-related greenhouse gas emissions in the medium (until 2020) and in the long term (until 2050). The paper investigates this issue using modeling tools and scenario approach. It concludes that transition to the "Low-Carbon Russia" scenarios must be accomplished in 2020—2030 or sooner, not only to mitigate emissions, but to block potential energy shortages and its costliness which can hinder economic growth.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


Sign in / Sign up

Export Citation Format

Share Document