furnace technology
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 0)

KALPATARU ◽  
2021 ◽  
Vol 30 (2) ◽  
pp. 141-152
Author(s):  
Harry Octavianus Sofian

Abstract. Technological knowledge of the use of metals is inseparable from human knowledge in the processing pyrotechnics of fire as a power in high temperature processes for producing objects. The fire is used for smelting and casting in melting furnaces. Metal smelting furnace is a heat production device, which is used to purify the metal, in this case iron. This paper aims to determine the development of ferrous metal smelting furnace technology in Indonesia with the library research method from the results of previous studies. Based on the results of the analysis, there are four technologies for smelting iron, namely pit kiln, bloomery furnace, blast furnace, and induction furnace. Of the four technologies, three are in use in Indonesia, namely bloomery furnace, blast furnace, and induction furnace.


JOM ◽  
2021 ◽  
Author(s):  
Joalet Dalene Steenkamp ◽  
Kondwani Wesley Banda ◽  
Pieter Johannes Andries Bezuidenhout ◽  
Glen Michael Denton

AbstractThe Pyrometallurgy Division at Mintek is known internationally for the development of applications of direct current (DC) arc furnace technology in smelting applications, more specifically in the smelting of primary resources, i.e., chromite, ilmenite, titanomagnetite, nickel laterite and ores containing precious group metals, and secondary resources, i.e., furnace slag or dust. From a furnace containment perspective, either an insulating or a conductive design philosophy can be applied, irrespective of the raw material being processed. In the initial stages of a project, desktop studies are typically conducted which include the selection of a furnace containment design philosophy, specific to the application. To lower the risk associated with incorrect selection of a design philosophy and/or furnace containment system components, it is prudent to conduct tests on laboratory and pilot scale and to transfer the knowledge gained to industrial applications. The paper presents examples of the laboratory and pilot techniques utilized.


Author(s):  
S. P. Rogozhnikov ◽  
I. S. Rogozhnikov

The expenses for the blast furnace coke are one of most significant part of the hot metal cost. To save the coke, various technologies are used, capable to replace the coke by cheaper additional fuel (AF), in particular by natural gas (NG). The injection of considerable volumes of NG results in an increase of hydrogen share in the blast furnace gases and in a significant variation in the blast furnace technology. Study of peculiarities of such variations is necessary to use the NG more effectively. Based on the mathematical model of the blast furnace process, estimation of the effect of natural gas hydrogen on changes in the heat and reducing processes along the blast furnace radius was accomplished. A formula was elaborated, confirmed by practice, for calculating the degree of hydrogen usage ηН2 along the radius of the furnace. It was determined, that the reducing action of hydrogen along the furnace radius takes place unevenly –decreasing from the periphery to the axial zone of the blast furnace. To estimate the quantitative relations of the reducing action of hydrogen, parameters of the PAO “MMK” and PAO “ArcelorMittal Krivoy Rog” blast furnaces for a long period of operation were analyzed. It was determined, that in the axial and intermediate zones of a blast furnace, values of criterion RН2, designating the oxygen share in the burden removed by hydrogen, are in the range of 0.11–0.16 and weakly depend on the NG consumption. In the peripheral zone near the walls, the value of R Н 2 sharply increases to 0.22–0.27. In this zone of the blast furnace the quantity the burden oxygen, removed by hydrogen, accounts for 80–85%. Therefore, hydrogen accomplished the heat and reducing processes mainly in the peripheral zone of the furnace. At the NG consumption increase, the ore load should be increased for the peripheral zone, near the walls individually accounting hydrogen action along the furnace radius. This will make possible to increase the degree of hydrogen usage and decrease the coke consumption.


Author(s):  
D. R. Ganin ◽  
V. G. Druzhkov ◽  
A. A. Panychev ◽  
A. Yu. Fuks

For elaborating of measures to improve the blast furnace technology, it is necessary to analyze production data related to blast furnaces operation. Estimation of technical level of blast furnace production in conditions of JSC “Ural Steel” was the aim of the study. Data on chemical composition of casted iron produced and burden materials quoted, as well as data on iron ore materials consumption, sinter grain-size distribution, pellets chemical composition and strength characteristics, coke mechanical strength and grain-size distribution. Results of analysis presented of production operation indices of Nos 1–4 blast furnaces within a five years period, the furnaces having net volumes 1007, 1033, 1513 and 2002 m3 correspondently. Periods of non-stable furnaces operation with long stops and repairs were excluded from the analyzed data. It was determined that iron and manganese oxide contents in the sinter are presented at lower level comparing with most of sintering plants of European Communities and Japan. Fine fraction less 5 mm content is considerably higher than the index for sinter, produced at other sintering plants of Russia, as well as of developed nations. Laboratory study and experimental-industrial tests at JSC “Ural Steel” confirm reasonability of the following mineral additives utilization in sintering process, delivered into the sintering burden by sludge: brown iron ore, bentonite clay, serpentinite-magnesites, that enables to increase suitable sinter yield, productivity of sintering machines, sinter impact strength. A necessity to optimize blast furnace slags chemical composition by relation SiO2/Al2O3 and CaO/MgO determined to improve scull formation conditions and elimination of coolers mass burning-through. To improve the technical and economic indices of JSC “Ural Steel blast furnaces operation some measures on the plant blast furnace technology modification proposed.


Author(s):  
B. P. Yur’ev ◽  
V. A. Dudko

A blast furnace technology developed, using equally basicity Kachkanar iron ore raw materials. Research work carried out to study gas media content and pellets basicity influence on their structure and metallurgical properties, as well as basicity and fuel content in the burden influence on metallurgical properties and structure of sinter. It was determined, that usage of low basicity pellets and high basicity sinter with weak rupture during reduction, provide a high gas penetrability in the upper horizons of blast furnace.It was shown, that presence of amphoteric titanium oxides and aluminum in Kachkanar sinter and pellets, as well as decrease of slope angle of the shaft in blast furnace prevents the early sticking of burden materials in the lower horizons of the furnace, that provides smooth burden lowering, high degree of gas reduction potential usage and thus the increase of the furnace productivity as well as coke rate decrease.An analysis of the work to optimize the technology of pellets production of Kachkanar concentrates made. It was determined, that an increase of the pellets quality can be reached as a result of implementation of a technology of their roasting with a partial dissociation of hematite. A complex estimation of metallurgical properties of partially dissociated pellets carried out. It was shown, that the pellets with hematite-magnetite structure, being a result of partial dissociation of hematite, are reduced at higher temperatures, when their intensive swell and rupture at the stage of hematite-into-magnetite transfer do not happen.


2018 ◽  
Vol 5 ◽  
pp. 89-103 ◽  
Author(s):  
Genevieve Geehan ◽  
Ritika Ritika ◽  
Coen Winchester

This meta-study aims to identify methods of optimising the efficiency of upcoming parabolic trough collector (PTC) solar furnace technology by analysing thermodynamic properties of both solar absorbers: SiC, Pyromark 2500, Polychromic Al-AlN and C54-TiSi2 nanoparticles; and heat transfer nanofluids: SiO2, TiO2, Al2O3, Cu and Al2O3-Cu with a 50:50 ratio. The thermodynamic properties investigated are energy absorbance and emittance, melting point, thermal conductivity and viscosity. Our study revealed that the optimal transfer fluid is the hybrid nanofluid Al2O3-Cu with a 50:50 ratio and a 1-2% volume fraction in an ethylene glycol base. The optimal solar absorber for use in combination with this nanofluid was found to be polychromic Al-AlN cerment absorber.


Sign in / Sign up

Export Citation Format

Share Document