The numbers of periodic orbits hidden at fixed points of 2-dimensional holomorphic mappings

2010 ◽  
Vol 53 (3) ◽  
pp. 863-886
Author(s):  
GuangYuan Zhang
Algorithms ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 101
Author(s):  
Alicia Cordero ◽  
Marlon Moscoso-Martínez ◽  
Juan R. Torregrosa

In this paper, we present a new parametric family of three-step iterative for solving nonlinear equations. First, we design a fourth-order triparametric family that, by holding only one of its parameters, we get to accelerate its convergence and finally obtain a sixth-order uniparametric family. With this last family, we study its convergence, its complex dynamics (stability), and its numerical behavior. The parameter spaces and dynamical planes are presented showing the complexity of the family. From the parameter spaces, we have been able to determine different members of the family that have bad convergence properties, as attracting periodic orbits and attracting strange fixed points appear in their dynamical planes. Moreover, this same study has allowed us to detect family members with especially stable behavior and suitable for solving practical problems. Several numerical tests are performed to illustrate the efficiency and stability of the presented family.


2009 ◽  
Vol 19 (11) ◽  
pp. 3813-3822 ◽  
Author(s):  
ABDELKRIM BOUKABOU ◽  
BILEL SAYOUD ◽  
HAMZA BOUMAIZA ◽  
NOURA MANSOURI

This paper addresses the control of unstable fixed points and unstable periodic orbits of the n-scroll Chua's circuit. In a first step, we give necessary and sufficient conditions for exponential stabilization of unstable fixed points by the proposed predictive control method. In addition, we show how a chaotic system with multiple unstable periodic orbits can be stabilized by taking the system dynamics from one UPO to another. Control performances of these approaches are demonstrated by numerical simulations.


2019 ◽  
Vol 33 (19) ◽  
pp. 1950212 ◽  
Author(s):  
Chengwei Dong ◽  
Lian Jia

We proposed a general method for the systematic calculation of unstable cycles in the Zhou system. The variational approach is employed for the cycle search, and we establish interesting symbolic dynamics successfully based on the orbits circuiting property with respect to different fixed points. Upon the defined symbolic rule, cycles with topological length up to five are sought and ordered. Further, upon parameter changes, the homotopy evolution of certain selected cycles are investigated. The topological classification methodology could be widely utilized in other low-dimensional dissipative systems.


2007 ◽  
Vol 17 (12) ◽  
pp. 4261-4272 ◽  
Author(s):  
ZBIGNIEW GALIAS ◽  
PIOTR ZGLICZYŃSKI

In this work, we introduce the Krawczyk operator for infinite dimensional maps. We prove two properties of this operator related to the existence of zeros of the map. We also show how the Krawczyk operator can be used to prove the existence of periodic orbits of infinite dimensional discrete dynamical systems and for finding all periodic orbits with a given period enclosed in a specified region. As an example, we consider the Kot–Schaffer growth-dispersal model, for which we find all fixed points and period-2 orbits enclosed in the region containing the attractor observed numerically.


Sign in / Sign up

Export Citation Format

Share Document